Difference between revisions of "Mock AIME 5 2005-2006 Problems/Problem 6"
m (Created page with "== Problem == == Solution == == See also == {{Mock AIME box|year=2005-2006|n=5|source=76847|num-b=5|num-a=7}} Category:Intermediate Algebra Problems") |
m (→Problem) |
||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
+ | <math>P_1</math>, <math>P_2</math>, and <math>P_3</math> are polynomials defined by: | ||
+ | |||
+ | : <math>P_1(x) = 1+x+x^3+x^4+\cdots+x^{96}+x^{97}+x^{99}+x^{100}</math> | ||
+ | : <math>P_2(x) = 1-x+x^2-\cdots-x^{99}+x^{100}</math> | ||
+ | : <math>P_3(x) = 1+x+x^2+\cdots+x^{66}+x^{67}</math> | ||
+ | |||
+ | Find the number of distinct complex roots of <math>P_1 \cdot P_2 \cdot P_3</math>. | ||
+ | |||
+ | == Solution == | ||
== Solution == | == Solution == |