Difference between revisions of "2014 IMO Problems"

m
m
Line 1: Line 1:
  
 +
==Problem 4==
 +
Points <math>P</math> and <math>Q</math> lie on side <math>BC</math> of acute-angled <math>\triangle{ABC}</math> so that <math>\angle{PAB}=\angle{BCA}</math> and <math>\angle{CAQ}=\angle{ABC}</math>. Points <math>M</math> and <math>N</math> lie on lines <math>AP</math> and <math>AQ</math>, respectively, such that <math>P</math> is the midpoint of <math>AM</math>, and <math>Q</math> is the midpoint of <math>AN</math>. Prove that lines <math>BM</math> and <math>CN</math> intersect on the circumcircle of <math>\triangle{ABC}</math>.
 +
 +
[[2014 IMO Problems/Problem 4|Solution]]
  
 
==Problem 5==
 
==Problem 5==

Revision as of 04:46, 9 October 2014

Problem 4

Points $P$ and $Q$ lie on side $BC$ of acute-angled $\triangle{ABC}$ so that $\angle{PAB}=\angle{BCA}$ and $\angle{CAQ}=\angle{ABC}$. Points $M$ and $N$ lie on lines $AP$ and $AQ$, respectively, such that $P$ is the midpoint of $AM$, and $Q$ is the midpoint of $AN$. Prove that lines $BM$ and $CN$ intersect on the circumcircle of $\triangle{ABC}$.

Solution

Problem 5

For each positive integer $n$, the Bank of Cape Town issues coins of denomination $\tfrac{1}{n}$. Given a finite collection of such coins (of not necessarily different denominations) with total value at most $99+\tfrac{1}{2}$, prove that it is possible to split this collection into $100$ or fewer groups, such that each group has total value at most $1$.

Solution

Problem 6

A set of lines in the plane is in $\textit{general position}$ if no two are parallel and no three pass through the same point. A set of lines in general position cuts the plane into regions, some of which have finite are; we call these its $\textit{finite regions}$. Prove that for all sufficiently large $n$, in any set of $n$ lines in general position it is possible to colour at least $\sqrt{n}$ of the lines blue in such a way that none of its finite regions has a completely blue boundary.

Solution