Difference between revisions of "2001 AIME I Problems/Problem 2"

(Solution)
Line 5: Line 5:
 
Let <math>x</math> be the mean of <math>\mathcal{S}</math>. Let <math>a</math> be the number of elements in <math>\mathcal{S}</math>.
 
Let <math>x</math> be the mean of <math>\mathcal{S}</math>. Let <math>a</math> be the number of elements in <math>\mathcal{S}</math>.
 
Then, the given tells us that <math>\frac{ax+1}{a+1}=x-13</math> and <math>\frac{ax+2001}{a+1}=x+27</math>. Subtracting, we have  
 
Then, the given tells us that <math>\frac{ax+1}{a+1}=x-13</math> and <math>\frac{ax+2001}{a+1}=x+27</math>. Subtracting, we have  
<center><math>\begin{align*}\frac{ax+2001}{a+1}-40=\frac{ax+1}{a+1} \Longrightarrow \frac{2000}{a+1}=40 \Longrightarrow a=49</math></center>
+
<center>\begin{align*}\frac{ax+2001}{a+1}-40=\frac{ax+1}{a+1} \Longrightarrow \frac{2000}{a+1}=40 \Longrightarrow a=49</center>
 
We plug that into our very first formula, and get:
 
We plug that into our very first formula, and get:
<center><math>\begin{align*}\frac{49x+1}{50}&=x-13 \\
+
<center>\begin{align*}\frac{49x+1}{50}&=x-13 \\
 
49x+1&=50x-650 \\
 
49x+1&=50x-650 \\
x&=\boxed{651}.\end{align*}</math></center>
+
x&=\boxed{651}.\end{align*}</center>
  
 
== See Also ==
 
== See Also ==

Revision as of 22:23, 4 March 2015

Problem

A finite set $\mathcal{S}$ of distinct real numbers has the following properties: the mean of $\mathcal{S}\cup\{1\}$ is $13$ less than the mean of $\mathcal{S}$, and the mean of $\mathcal{S}\cup\{2001\}$ is $27$ more than the mean of $\mathcal{S}$. Find the mean of $\mathcal{S}$.

Solution

Let $x$ be the mean of $\mathcal{S}$. Let $a$ be the number of elements in $\mathcal{S}$. Then, the given tells us that $\frac{ax+1}{a+1}=x-13$ and $\frac{ax+2001}{a+1}=x+27$. Subtracting, we have

\begin{align*}\frac{ax+2001}{a+1}-40=\frac{ax+1}{a+1} \Longrightarrow \frac{2000}{a+1}=40 \Longrightarrow a=49

We plug that into our very first formula, and get:

\begin{align*}\frac{49x+1}{50}&=x-13 \\

49x+1&=50x-650 \\

x&=\boxed{651}.\end{align*}

See Also

2001 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png