Difference between revisions of "2014 AMC 10A Problems/Problem 22"

(Solution 2)
(Solution 2)
Line 11: Line 11:
 
==Solution 2==
 
==Solution 2==
  
Mark point <math>F</math> on line <math>\overline{CD}</math> such that $\angle EBF = 15
+
Mark point <math>F</math> on line <math>\overline{CD}</math> such that <math>\angle EBF = 15&\circ</math>.
  
 
==See Also==
 
==See Also==

Revision as of 13:02, 26 December 2015

Problem

In rectangle $ABCD$, $AB=20$ and $BC=10$. Let $E$ be a point on $\overline{CD}$ such that $\angle CBE=15^\circ$. What is $AE$?

$\textbf{(A)}\ \dfrac{20\sqrt3}3\qquad\textbf{(B)}\ 10\sqrt3\qquad\textbf{(C)}\ 18\qquad\textbf{(D)}\ 11\sqrt3\qquad\textbf{(E)}\ 20$

Solution

Note that $\tan 15^\circ=\frac{EC}{10} \Rightarrow EC=20-10 \sqrt 3$. (If you do not know the tangent half-angle formula, it is $\frac{1-\cos a}{\sin a}$). Therefore, we have $DE=10\sqrt 3$. Since $ADE$ is a $30-60-90$ triangle, $AE=2 \cdot AD=2 \cdot 10=\boxed{\textbf{(E)} \: 20}$

Solution 2

Mark point $F$ on line $\overline{CD}$ such that $\angle EBF = 15&\circ$ (Error compiling LaTeX. Unknown error_msg).

See Also

2014 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png