Difference between revisions of "2016 AMC 10A Problems/Problem 4"

(Aesthetics)
m (Added some elements from 12A solution)
Line 8: Line 8:
  
 
The value, by definition, is <cmath>\begin{align*}
 
The value, by definition, is <cmath>\begin{align*}
\frac{3}{8}-\left(-\frac{2}{5}\right)\left\lfloor\frac{3}{8}\times\frac{-5}{2}\right\rfloor
+
\text{rem}\left(\frac{3}{8},-\frac{2}{5}\right)
 +
&= \frac{3}{8}-\left(-\frac{2}{5}\right)\left\lfloor\frac{\frac{3}{8}}{-\frac{2}{5}}\right\rfloor \
 +
&= \frac{3}{8}-\left(-\frac{2}{5}\right)\left\lfloor\frac{3}{8}\times\frac{-5}{2}\right\rfloor \
 
&= \frac{3}{8}-\left(-\frac{2}{5}\right)\left\lfloor\frac{-15}{16}\right\rfloor\
 
&= \frac{3}{8}-\left(-\frac{2}{5}\right)\left\lfloor\frac{-15}{16}\right\rfloor\
 
&= \frac{3}{8}-\left(-\frac{2}{5}\right)\left(-1\right)\
 
&= \frac{3}{8}-\left(-\frac{2}{5}\right)\left(-1\right)\

Revision as of 11:50, 4 February 2016

Problem

The remainder can be defined for all real numbers $x$ and $y$ with $y \neq 0$ by \[\text{rem} (x ,y)=x-y\left \lfloor \frac{x}{y} \right \rfloor\]where $\left \lfloor \tfrac{x}{y} \right \rfloor$ denotes the greatest integer less than or equal to $\tfrac{x}{y}$. What is the value of $\text{rem} (\tfrac{3}{8}, -\tfrac{2}{5} )$?

$\textbf{(A) } -\frac{3}{8} \qquad \textbf{(B) } -\frac{1}{40} \qquad \textbf{(C) } 0 \qquad \textbf{(D) } \frac{3}{8} \qquad \textbf{(E) } \frac{31}{40}$

Solution

The value, by definition, is \begin{align*} \text{rem}\left(\frac{3}{8},-\frac{2}{5}\right) &= \frac{3}{8}-\left(-\frac{2}{5}\right)\left\lfloor\frac{\frac{3}{8}}{-\frac{2}{5}}\right\rfloor \\ &= \frac{3}{8}-\left(-\frac{2}{5}\right)\left\lfloor\frac{3}{8}\times\frac{-5}{2}\right\rfloor \\ &= \frac{3}{8}-\left(-\frac{2}{5}\right)\left\lfloor\frac{-15}{16}\right\rfloor\\ &= \frac{3}{8}-\left(-\frac{2}{5}\right)\left(-1\right)\\ &= \frac{3}{8}-\frac{2}{5}\\ &= \boxed{\textbf{(B) } -\frac{1}{40}} \end{align*}

See Also

2016 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png