Difference between revisions of "2016 AMC 10A Problems/Problem 7"

(Solution)
m
Line 7: Line 7:
 
== Solution ==
 
== Solution ==
  
As <math>x</math> is the mean, <cmath>\begin{align*}
+
Since <math>x</math> is the mean,
x=\frac{60+100+x+40+50+200+90}{7}
+
<cmath>\begin{align*}
&\rightarrow x=\frac{540+x}{7} \
+
x&=\frac{60+100+x+40+50+200+90}{7}\
&\rightarrow 7x=540+x \
+
&=\frac{540+x}{7}.
&\rightarrow 6x=540 \
 
&\rightarrow x=\boxed{\textbf{(D) }90.}
 
 
\end{align*}</cmath>
 
\end{align*}</cmath>
 +
 +
Therefore, <math>7x=540+x</math>, so <math>x=\boxed{\textbf{(D) }90}.</math>
  
 
==Check==
 
==Check==
Order the list: <math>\{40,50,60,90,100,120\}</math>. <math>x</math> must be <math>60</math> or <math>90</math> because it is the median and mode of the set. Thus <math>90</math> is correct.
+
 
 +
Order the list: <math>\{40,50,60,90,100,120\}</math>. <math>x</math> must be either <math>60</math> or <math>90</math> because it is both the median and the mode of the set. Thus <math>90</math> is correct.
  
 
==See Also==
 
==See Also==

Revision as of 16:47, 17 February 2016

Problem

The mean, median, and mode of the $7$ data values $60, 100, x, 40, 50, 200, 90$ are all equal to $x$. What is the value of $x$?

$\textbf{(A)}\ 50 \qquad\textbf{(B)}\ 60 \qquad\textbf{(C)}\ 75 \qquad\textbf{(D)}\ 90 \qquad\textbf{(E)}\ 100$

Solution

Since $x$ is the mean, \begin{align*} x&=\frac{60+100+x+40+50+200+90}{7}\\ &=\frac{540+x}{7}. \end{align*}

Therefore, $7x=540+x$, so $x=\boxed{\textbf{(D) }90}.$

Check

Order the list: $\{40,50,60,90,100,120\}$. $x$ must be either $60$ or $90$ because it is both the median and the mode of the set. Thus $90$ is correct.

See Also

2016 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2016 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png