Difference between revisions of "2010 AMC 12B Problems/Problem 25"
(→Solution) |
|||
Line 11: | Line 11: | ||
== Solution == | == Solution == | ||
Because 67 is the largest prime factor of 2010, it means that in the prime factorization of <math>\prod_{n=2}^{5300}\text{pow}(n)</math>, there'll be <math>p_1 ^{e_1} \cdot p_2 ^{e_2} \cdot .... 67^x ...</math> where <math>x</math> is the desired value we are looking for. Thus, to find this answer, we need to look for the number of times 67 would be incorporated into the giant product. | Because 67 is the largest prime factor of 2010, it means that in the prime factorization of <math>\prod_{n=2}^{5300}\text{pow}(n)</math>, there'll be <math>p_1 ^{e_1} \cdot p_2 ^{e_2} \cdot .... 67^x ...</math> where <math>x</math> is the desired value we are looking for. Thus, to find this answer, we need to look for the number of times 67 would be incorporated into the giant product. | ||
− | Any number of the form <math>x \cdot 67</math> would fit this form. However, this number tops at <math>71 = x</math> because 71 is a higher prime than 67. <math>67^2</math> itself must be counted twice because it | + | Any number of the form <math>x \cdot 67</math> would fit this form. However, this number tops at <math>71 = x</math> because 71 is a higher prime than 67. <math>67^2</math> itself must be counted twice because it is a squared number. Any non-prime number that's less than 79 (and greater than 71) can be counted, and this totals 5. We have <math>70</math> numbers (as 71 isn't counted - 1 through 70), an additional <math>1</math> (<math>67^2</math>), and <math>6</math> values just greater than <math>71</math> but less than <math>79</math> (72, 74, 75, 76, 77, and 78). Thus, <math>70 + 1 + 6 = \boxed{77} \Rightarrow \boxed{D}</math> |
== Similar Solution == | == Similar Solution == |
Revision as of 03:58, 10 July 2016
Problem 25
For every integer , let be the largest power of the largest prime that divides . For example . What is the largest integer such that divides
?
Solution
Because 67 is the largest prime factor of 2010, it means that in the prime factorization of , there'll be where is the desired value we are looking for. Thus, to find this answer, we need to look for the number of times 67 would be incorporated into the giant product. Any number of the form would fit this form. However, this number tops at because 71 is a higher prime than 67. itself must be counted twice because it is a squared number. Any non-prime number that's less than 79 (and greater than 71) can be counted, and this totals 5. We have numbers (as 71 isn't counted - 1 through 70), an additional (), and values just greater than but less than (72, 74, 75, 76, 77, and 78). Thus,
Similar Solution
After finding the prime factorization of , divide by and add divided by in order to find the total number of multiples of between and . Since ,, and are prime numbers greater than and less than or equal to , subtract from to get the answer .
Need Discussion and Clarification
How do we know that we only have to check 67? There is no solid relationship between 67 being the largest prime factor in 2010 and 67 giving the smallest result of 77. Details in the Discussions page of this Article: http://artofproblemsolving.com/wiki/index.php?title=Talk:2010_AMC_12B_Problems/Problem_25
See Also
2010 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 24 |
Followed by Last Problem |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.