Difference between revisions of "1995 AHSME Problems/Problem 26"

(remove nonexistent category)
 
(2 intermediate revisions by one other user not shown)
Line 19: Line 19:
 
<!-- [http://www.artofproblemsolving.com/Forum/viewtopic.php?t=62477 Link to Image] -->
 
<!-- [http://www.artofproblemsolving.com/Forum/viewtopic.php?t=62477 Link to Image] -->
 
<math> \mathrm{(A) \ 23 \pi } \qquad \mathrm{(B) \ \frac {47}{2} \pi } \qquad \mathrm{(C) \ 24 \pi } \qquad \mathrm{(D) \ \frac {49}{2} \pi } \qquad \mathrm{(E) \ 25 \pi }  </math>
 
<math> \mathrm{(A) \ 23 \pi } \qquad \mathrm{(B) \ \frac {47}{2} \pi } \qquad \mathrm{(C) \ 24 \pi } \qquad \mathrm{(D) \ \frac {49}{2} \pi } \qquad \mathrm{(E) \ 25 \pi }  </math>
 +
  
 
== Solution ==
 
== Solution ==
 +
 +
'''Solution 1'''
 +
 
Let the radius of the circle be <math>r</math> and let <math>x=\overline{OE}</math>.  
 
Let the radius of the circle be <math>r</math> and let <math>x=\overline{OE}</math>.  
  
Line 30: Line 34:
  
 
Thus, the area of the circle is <math>\pi r^2 = 24\pi \Rightarrow C</math>.
 
Thus, the area of the circle is <math>\pi r^2 = 24\pi \Rightarrow C</math>.
 +
 +
'''Solution 2'''
 +
 +
Let the radius of the circle be <math>r</math>.
 +
 +
We can see that <math>\triangle CFD</math> has a right angle at <math>F</math> and that <math>\triangle EOD</math> has a right angle at <math>O</math>. 
 +
 +
Both triangles also share <math>\angle ODE</math>, so <math>\triangle CFD</math> and <math>\triangle EOD</math> are [[Similar(geometry)|similar]].
 +
 +
This means that <math>\frac {DE}{OD}=\frac {CD}{FD}</math>.
 +
 +
So,  <math>\frac {6}{r}=\frac {2r}{8}</math>. Simplifying, <math>r^2 = 24</math>.
 +
 +
This means the area is <math>24\pi \Rightarrow C</math>.
  
 
== See also ==
 
== See also ==

Latest revision as of 19:01, 23 January 2017

Problem

In the figure, $\overline{AB}$ and $\overline{CD}$ are diameters of the circle with center $O$, $\overline{AB} \perp \overline{CD}$, and chord $\overline{DF}$ intersects $\overline{AB}$ at $E$. If $DE = 6$ and $EF = 2$, then the area of the circle is [asy]size(120); defaultpen(linewidth(0.7)); pair O=origin, A=(-5,0), B=(5,0), C=(0,5), D=(0,-5), F=5*dir(40), E=intersectionpoint(A--B, F--D); draw(Circle(O, 5)); draw(A--B^^C--D--F); dot(O^^A^^B^^C^^D^^E^^F); markscalefactor=0.05; draw(rightanglemark(B, O, D));  label("$A$", A, dir(O--A)); label("$B$", B, dir(O--B)); label("$C$", C, dir(O--C)); label("$D$", D, dir(O--D)); label("$F$", F, dir(O--F)); label("$O$", O, NW); label("$E$", E, SE);[/asy] $\mathrm{(A) \ 23 \pi } \qquad \mathrm{(B) \ \frac {47}{2} \pi } \qquad \mathrm{(C) \ 24 \pi } \qquad \mathrm{(D) \ \frac {49}{2} \pi } \qquad \mathrm{(E) \ 25 \pi }$


Solution

Solution 1

Let the radius of the circle be $r$ and let $x=\overline{OE}$.

By the Pythagorean Theorem, $OD^2+OE^2=DE^2 \Rightarrow r^2+x^2=6^2=36$.

By Power of a point, $AE \cdot EB = DE \cdot EF \Rightarrow (r+x)(r-x)=r^2-x^2=6\cdot2=12$.

Adding these equations yields $2r^2=48 \Rightarrow r^2 = 24$.

Thus, the area of the circle is $\pi r^2 = 24\pi \Rightarrow C$.

Solution 2

Let the radius of the circle be $r$.

We can see that $\triangle CFD$ has a right angle at $F$ and that $\triangle EOD$ has a right angle at $O$.

Both triangles also share $\angle ODE$, so $\triangle CFD$ and $\triangle EOD$ are similar.

This means that $\frac {DE}{OD}=\frac {CD}{FD}$.

So, $\frac {6}{r}=\frac {2r}{8}$. Simplifying, $r^2 = 24$.

This means the area is $24\pi \Rightarrow C$.

See also

1995 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 25
Followed by
Problem 27
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png