Difference between revisions of "1953 AHSME Problems/Problem 19"
(Created page with "==Problem 19== In the expression <math>xy^2</math>, the values of <math>x</math> and <math>y</math> are each decreased <math>25</math> %; the value of the expression is: <m...") |
(→Solution) |
||
Line 11: | Line 11: | ||
<math>xy^2</math> | <math>xy^2</math> | ||
− | <math>(\frac{ | + | <math>(\frac{3}{4}x)(\frac{3}{4}y)^2</math> |
<math>(\frac{3}{4})^3xy^2</math> | <math>(\frac{3}{4})^3xy^2</math> | ||
Line 18: | Line 18: | ||
<math>xy^2-\frac{27}{64}xy^2 = \frac{37}{64}xy^2 \implies \textbf{(C)}</math> | <math>xy^2-\frac{27}{64}xy^2 = \frac{37}{64}xy^2 \implies \textbf{(C)}</math> | ||
+ | |||
==See Also== | ==See Also== | ||
Latest revision as of 20:48, 1 April 2017
Problem 19
In the expression , the values of and are each decreased %; the value of the expression is:
Solution
See Also
1953 AHSC (Problems • Answer Key • Resources) | ||
Preceded by Problem 18 |
Followed by Problem 20 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 • 41 • 42 • 43 • 44 • 45 • 46 • 47 • 48 • 49 • 50 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.