Difference between revisions of "2017 USAJMO Problems"
m (→Problem 1) |
Bobthepotato (talk | contribs) m (→Problem 3) |
||
Line 18: | Line 18: | ||
[[2017 USAJMO Problems/Problem 2|Solution]] | [[2017 USAJMO Problems/Problem 2|Solution]] | ||
===Problem 3=== | ===Problem 3=== | ||
− | (<math>*</math>) Let <math>ABC</math> be an equilateral triangle and let <math>P</math> be a point on its circumcircle. Let lines <math>PA</math> and <math> | + | (<math>*</math>) Let <math>ABC</math> be an equilateral triangle and let <math>P</math> be a point on its circumcircle. Let lines <math>PA</math> and <math>BC</math> intersect at <math>D</math>; let lines <math>PB</math> and <math>CA</math> intersect at <math>E</math>; and let lines <math>PC</math> and <math>AB</math> intersect at <math>F</math>. Prove that the area of triangle <math>DEF</math> is twice the area of triangle <math>ABC</math>. |
[[2017 USAJMO Problems/Problem 3|Solution]] | [[2017 USAJMO Problems/Problem 3|Solution]] |
Revision as of 19:33, 19 April 2017
Contents
[hide]Day 1
Note: For any geometry problem whose statement begins with an asterisk (), the first page of the solution must be a large, in-scale, clearly labeled diagram. Failure to meet this requirement will result in an automatic 1-point deduction.
Problem 1
Prove that there are infinitely many distinct pairs of relatively prime positive integers and such that is divisible by
Problem 2
Consider the equation
(a) Prove that there are infinitely many pairs of positive integers satisfying the equation.
(b) Describe all pairs of positive integers satisfying the equation.
Problem 3
() Let be an equilateral triangle and let be a point on its circumcircle. Let lines and intersect at ; let lines and intersect at ; and let lines and intersect at . Prove that the area of triangle is twice the area of triangle .
Day 2
Problem 4
Problem 5
Problem 6
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.
2017 USAJMO (Problems • Resources) | ||
Preceded by 2016 USAJMO |
Followed by 2018 USAJMO | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAJMO Problems and Solutions |