Difference between revisions of "2001 AIME I Problems/Problem 1"
Ilovemath04 (talk | contribs) m (→Solution) |
|||
Line 2: | Line 2: | ||
Find the sum of all positive two-digit integers that are divisible by each of their digits. | Find the sum of all positive two-digit integers that are divisible by each of their digits. | ||
− | == Solution == | + | == Solution 1 == |
Let our number be <math>10a + b</math>, <math>a,b \neq 0</math>. Then we have two conditions: <math>10a + b \equiv 10a \equiv 0 \pmod{b}</math> and <math>10a + b \equiv b \pmod{a}</math>, or <math>a</math> divides into <math>b</math> and <math>b</math> divides into <math>10a</math>. Thus <math>b = a, 2a,</math> or <math>5a</math> (note that if <math>b = 10a</math>, then <math>b</math> would not be a digit). | Let our number be <math>10a + b</math>, <math>a,b \neq 0</math>. Then we have two conditions: <math>10a + b \equiv 10a \equiv 0 \pmod{b}</math> and <math>10a + b \equiv b \pmod{a}</math>, or <math>a</math> divides into <math>b</math> and <math>b</math> divides into <math>10a</math>. Thus <math>b = a, 2a,</math> or <math>5a</math> (note that if <math>b = 10a</math>, then <math>b</math> would not be a digit). | ||
Line 10: | Line 10: | ||
If we ignore the case <math>b = 0</math> as we have been doing so far, then the sum is <math>495 + 120 + 15 = \boxed{630}</math>. | If we ignore the case <math>b = 0</math> as we have been doing so far, then the sum is <math>495 + 120 + 15 = \boxed{630}</math>. | ||
− | Using casework, we can list out all of these numbers: <math>11+12+15+22+24+33+36+44+48+55+66+77+88+99=\boxed{630}</math>. | + | == Solution 2 == |
+ | |||
+ | Using casework, we can list out all of these numbers: <math>11+12+15+22+24+33+36+44+48+55+66+77+88+99=\boxed{630}</math>. | ||
== See also == | == See also == |
Revision as of 13:30, 30 May 2017
Contents
[hide]Problem
Find the sum of all positive two-digit integers that are divisible by each of their digits.
Solution 1
Let our number be , . Then we have two conditions: and , or divides into and divides into . Thus or (note that if , then would not be a digit).
- For , we have for nine possibilities, giving us a sum of .
- For , we have for four possibilities (the higher ones give ), giving us a sum of .
- For , we have for one possibility (again, higher ones give ), giving us a sum of .
If we ignore the case as we have been doing so far, then the sum is .
Solution 2
Using casework, we can list out all of these numbers: .
See also
2001 AIME I (Problems • Answer Key • Resources) | ||
Preceded by First Question |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.