Difference between revisions of "2000 AIME I Problems/Problem 6"

m (Problem)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
For how many [[ordered pair]]s <math>(x,y)</math> of [[integer]]s is it true that <math>0 < x < y < 10^{6}</math> and that the [[arithmetic mean]] of <math>x</math> and <math>y</math> is exactly <math>2</math> more than the [[geometric mean]] of <math>x</math> and <math>y</math>?
+
For how many [[ordered pair]]s <math>(x,y)</math> of [[integer]]s is it true that <math>0 < x < y < 10^3
 +
and that the [[arithmetic mean]] of </math>x<math> and </math>y<math> is exactly </math>2<math> more than the [[geometric mean]] of </math>x<math> and </math>y$?
  
 
== Solution ==
 
== Solution ==

Revision as of 03:25, 18 November 2017

Problem

For how many ordered pairs $(x,y)$ of integers is it true that $0 < x < y < 10^3  and that the [[arithmetic mean]] of$x$and$y$is exactly$2$more than the [[geometric mean]] of$x$and$y$?

Solution

Solution 1

\begin{eqnarray*} \frac{x+y}{2} &=& \sqrt{xy} + 2\\ x+y-4 &=& 2\sqrt{xy}\\ y - 2\sqrt{xy} + x &=& 4\\ \sqrt{y} - \sqrt{x} &=& \pm 2\end{eqnarray*}

Because $y > x$, we only consider $+2$.

For simplicity, we can count how many valid pairs of $(\sqrt{x},\sqrt{y})$ that satisfy our equation.

The maximum that $\sqrt{y}$ can be is $10^3 - 1 = 999$ because $\sqrt{y}$ must be an integer (this is because $\sqrt{y} - \sqrt{x} = 2$, an integer). Then $\sqrt{x} = 997$, and we continue this downward until $\sqrt{y} = 3$, in which case $\sqrt{x} = 1$. The number of pairs of $(\sqrt{x},\sqrt{y})$, and so $(x,y)$ is then $\boxed{997}$.

Solution 2

Let $a^2$ = $x$ and $b^2$ = $y$

Then \[\frac{a^2 + b^2}{2} = \sqrt{{a^2}{b^2}} +2\] \[a^2 + b^2 = 2ab + 4\] \[(a-b)^2 = 4\] \[(a-b) = \pm 2\]

This makes counting a lot easier since now we just have to find all pairs $(a,b)$ that differ by 2.


Because $\sqrt{10^6} = 10^3$, then we can use all positive integers less than 1000 for $a$ and $b$.


Without loss of generality, let's say $a < b$.


We can count even and odd pairs separately to make things easier*:


Odd: \[(1,3) , (3,5) , (5,7)  .  .  .  (997,999)\]


Even: \[(2,4) , (4,6) , (6,8)  .  .  .  (996,998)\]


This makes 499 odd pairs and 498 even pairs, for a total of $\boxed{997}$ pairs.


$*$Note: We are counting the pairs for the values of $a$ and $b$, which, when squared, translate to the pairs of $(x,y)$ we are trying to find.

See also

2000 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png