Difference between revisions of "2009 AMC 10A Problems/Problem 5"

(Solution 2)
(Solution 2)
Line 7: Line 7:
 
Using the standard multiplication algorithm, <math>111,111,111^2=12,345,678,987,654,321,</math> whose digit sum is <math>81\longrightarrow \fbox{E}.</math>
 
Using the standard multiplication algorithm, <math>111,111,111^2=12,345,678,987,654,321,</math> whose digit sum is <math>81\longrightarrow \fbox{E}.</math>
 
==Solution 2==
 
==Solution 2==
 +
Note that:
 +
 +
<math>11^2 = 121 \ 111^2 = 12321 \ 1111^2 = 1234321</math>
 +
 +
We see a pattern and find that <math>111,111,111^2=12,345,678,987,654,321</math> whose digit sum is <math>81\longrightarrow \fbox{E}.</math>
 +
 +
 +
 +
==Solution 3==
 
Note that:  
 
Note that:  
  

Revision as of 00:56, 25 December 2017

Problem

What is the sum of the digits of the square of $111,111,111$?

$\mathrm{(A)}\ 18\qquad\mathrm{(B)}\ 27\qquad\mathrm{(C)}\ 45\qquad\mathrm{(D)}\ 63\qquad\mathrm{(E)}\ 81$

Solution

Using the standard multiplication algorithm, $111,111,111^2=12,345,678,987,654,321,$ whose digit sum is $81\longrightarrow \fbox{E}.$

Solution 2

Note that:

$11^2 = 121 \\ 111^2 = 12321 \\ 1111^2 = 1234321$

We see a pattern and find that $111,111,111^2=12,345,678,987,654,321$ whose digit sum is $81\longrightarrow \fbox{E}.$


Solution 3

Note that:

$11^2 = 121 \\ 111^2 = 12321 \\ 1111^2 = 1234321$

We see a pattern and find that $111,111,111^2=12,345,678,987,654,321$ whose digit sum is $81\longrightarrow \fbox{E}.$

See also

2009 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png