Difference between revisions of "2011 AMC 12B Problems/Problem 21"
(→Solution) |
(→Solution) |
||
Line 8: | Line 8: | ||
Answer: (D) | Answer: (D) | ||
− | \frac{x + y}{2} = 10 a+b<math> for some < | + | <math>\frac{x + y}{2} = 10 a+b</math> for some <math>1\le a\le 9 </math>,<math>0\le b\le 9</math>. |
− | < | + | <math>\sqrt{xy} = 10 b+a</math> |
− | < | + | <math>100 a^2 + 20 ab + b^2 = \frac{x^2 + 2xy + y^2}{4}</math> |
− | < | + | <math>xy = 100b^2 + 20ab + a^2</math> |
− | < | + | <math>\frac{x^2 + 2xy + y^2}{4} - xy = \frac{x^2 - 2xy + y^2}{4} = \left(\frac{x-y}{2}\right)^2 = 99 a^2 - 99 b^2 = 99(a^2 - b^2)</math> |
<br /> | <br /> | ||
− | < | + | <math>|x-y| = 2\sqrt{99(a^2 - b^2)}</math> |
− | Note that in order for x-y to be integer, < | + | Note that in order for x-y to be integer, <math>(a^2 - b^2)</math> has to be <math>11n</math> for some perfect square <math>n</math>. Since <math>a</math> is at most <math>9</math>, <math>n = 1</math> or <math>4</math> |
− | If < | + | If <math>n = 1</math>, <math>|x-y| = 66</math>, if <math>n = 4</math>, <math>|x-y| = 132</math>. In AMC, we are done. Otherwise, we need to show that <math>a^2 -b^2 = 44</math> is impossible. |
− | < | + | <math>(a-b)(a+b) = 44</math> -> <math>a-b = 1</math>, or <math>2</math> or <math>4</math> and <math>a+b = 44</math>, <math>22</math>, <math>11</math> respectively. And since <math>a+b \le 18</math>, <math>a+b = 11</math>, <math>a-b = 4</math>, but there is no integer solution for <math>a</math>, <math>b</math>. |
In addition: | In addition: | ||
− | Note that < | + | Note that <math>11n</math> with <math>n = 1</math> may be obtained with <math>a = 6</math> and <math>b = 5</math> as <math>a^2 - b^2 = 36 - 25 = 11</math>. |
==Sidenote== | ==Sidenote== |
Revision as of 21:11, 20 January 2018
Contents
[hide]Problem
The arithmetic mean of two distinct positive integers and is a two-digit integer. The geometric mean of and is obtained by reversing the digits of the arithmetic mean. What is ?
Solution
Answer: (D)
for some ,.
Note that in order for x-y to be integer, has to be for some perfect square . Since is at most , or
If , , if , . In AMC, we are done. Otherwise, we need to show that is impossible.
-> , or or and , , respectively. And since , , , but there is no integer solution for , .
In addition: Note that with may be obtained with and as .
Sidenote
It is easy to see that is the only solution. This yields . Their arithmetic mean is and their geometric mean is .
See also
2011 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 20 |
Followed by Problem 22 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.