Difference between revisions of "2017 AMC 12A Problems/Problem 21"
(Switch to tabular) |
m (→Solution) |
||
Line 9: | Line 9: | ||
\qquad\textbf{(E)}\ 11</math> | \qquad\textbf{(E)}\ 11</math> | ||
− | ==Solution | + | ==Solution== |
At first, <math>S=\{0,10\}</math>. | At first, <math>S=\{0,10\}</math>. |
Revision as of 22:23, 14 February 2018
Problem
A set is constructed as follows. To begin, . Repeatedly, as long as possible, if is an integer root of some polynomial for some , all of whose coefficients are elements of , then is put into . When no more elements can be added to , how many elements does have?
Solution
At first, .
At this point, no more elements can be added to . To see this, let
with each in . is a factor of , and is in , so has to be a factor of some element in . There are no such integers left, so there can be no more additional elements. has elements
See Also
2017 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 20 |
Followed by Problem 22 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.