Difference between revisions of "2018 AMC 12B Problems/Problem 7"
(Created page with "== Problem == What is the value of <cmath> \log_37\cdot\log_59\cdot\log_711\cdot\log_913\cdots\log_{21}25\cdot\log_{23}27? </cmath> <math>\textbf{(A) } 3 \qquad \textbf{(B) }...") |
(→Solution) |
||
Line 5: | Line 5: | ||
<math>\textbf{(A) } 3 \qquad \textbf{(B) } 3\log_{7}23 \qquad \textbf{(C) } 6 \qquad \textbf{(D) } 9 \qquad \textbf{(E) } 10 </math> | <math>\textbf{(A) } 3 \qquad \textbf{(B) } 3\log_{7}23 \qquad \textbf{(C) } 6 \qquad \textbf{(D) } 9 \qquad \textbf{(E) } 10 </math> | ||
− | == Solution == | + | == Solution 1== |
Change of base makes this <math>\frac{\prod_{i=3}^{13} \log (2i+1)}{\prod_{i=1}^{11}\log (2i+1)} = \frac{\log 25 \log 27}{\log 3 \log 5} = \log_327\cdot \log_525 = \boxed{6}</math> (mathguy623) | Change of base makes this <math>\frac{\prod_{i=3}^{13} \log (2i+1)}{\prod_{i=1}^{11}\log (2i+1)} = \frac{\log 25 \log 27}{\log 3 \log 5} = \log_327\cdot \log_525 = \boxed{6}</math> (mathguy623) | ||
+ | |||
+ | == Solution 2 == | ||
+ | |||
+ | By using the chain rule for logarithms (<math>\log _{a} b \cdot \log _{b} c = \log _{a} c</math>), we get <math>\log _{3} 7 \cdot \log _{5} 9 \cdot \cdot \cdot \log_{23} 27 = (\log _{3} 7 \cdot \log _{7} 11 \cdot \cdot \cdot \log _{23} 27) \cdot (\log _{5} 9 \cdot \log _{9} 13 \cdot \cdot \cdot \log _{21} 25) = \log _{3} 27 \cdot \log _{5} 25 = 3 \cdot 2 = 6</math>. | ||
==See Also== | ==See Also== |
Revision as of 14:29, 16 February 2018
Contents
[hide]Problem
What is the value of
Solution 1
Change of base makes this (mathguy623)
Solution 2
By using the chain rule for logarithms (), we get .
See Also
2018 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 6 |
Followed by Problem 8 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.