Difference between revisions of "2016 AIME II Problems/Problem 11"
Expilncalc (talk | contribs) (Added solution) |
|||
Line 1: | Line 1: | ||
+ | ==Problem== | ||
For positive integers <math>N</math> and <math>k</math>, define <math>N</math> to be <math>k</math>-nice if there exists a positive integer <math>a</math> such that <math>a^{k}</math> has exactly <math>N</math> positive divisors. Find the number of positive integers less than <math>1000</math> that are neither <math>7</math>-nice nor <math>8</math>-nice. | For positive integers <math>N</math> and <math>k</math>, define <math>N</math> to be <math>k</math>-nice if there exists a positive integer <math>a</math> such that <math>a^{k}</math> has exactly <math>N</math> positive divisors. Find the number of positive integers less than <math>1000</math> that are neither <math>7</math>-nice nor <math>8</math>-nice. | ||
Revision as of 16:19, 22 March 2018
Contents
[hide]Problem
For positive integers and , define to be -nice if there exists a positive integer such that has exactly positive divisors. Find the number of positive integers less than that are neither -nice nor -nice.
Solution
We claim that an integer is only -nice if and only if . By the number of divisors formula, the number of divisors of is . Since all the s are divisible by in a perfect power, the only if part of the claim follows. To show that all numbers are -nice, write . Note that has the desired number of factors and is a perfect kth power. By PIE, the number of positive integers less than that are either or is , so the desired answer is .
Solution by Shaddoll
Solution II
All integers will have factorization . Therefore, the number of factors in is , and for is . The most salient step afterwards is to realize that all numbers not and also not satisfy the criterion. The cycle repeats every integers, and by PIE, of them are either -nice or -nice or both. Therefore, we can take numbers minus the that work between inclusive, to get positive integers less than that are not nice for .
See also
2016 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 10 |
Followed by Problem 12 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.