Difference between revisions of "2001 AIME I Problems/Problem 2"
Mathgeek2006 (talk | contribs) m (→Solution) |
m (→Solution) |
||
Line 2: | Line 2: | ||
A finite [[set]] <math>\mathcal{S}</math> of distinct real numbers has the following properties: the [[arithmetic mean|mean]] of <math>\mathcal{S}\cup\{1\}</math> is <math>13</math> less than the mean of <math>\mathcal{S}</math>, and the mean of <math>\mathcal{S}\cup\{2001\}</math> is <math>27</math> more than the mean of <math>\mathcal{S}</math>. Find the mean of <math>\mathcal{S}</math>. | A finite [[set]] <math>\mathcal{S}</math> of distinct real numbers has the following properties: the [[arithmetic mean|mean]] of <math>\mathcal{S}\cup\{1\}</math> is <math>13</math> less than the mean of <math>\mathcal{S}</math>, and the mean of <math>\mathcal{S}\cup\{2001\}</math> is <math>27</math> more than the mean of <math>\mathcal{S}</math>. Find the mean of <math>\mathcal{S}</math>. | ||
− | == Solution == | + | ==Solution== |
Let <math>x</math> be the mean of <math>\mathcal{S}</math>. Let <math>a</math> be the number of elements in <math>\mathcal{S}</math>. | Let <math>x</math> be the mean of <math>\mathcal{S}</math>. Let <math>a</math> be the number of elements in <math>\mathcal{S}</math>. | ||
Then, the given tells us that <math>\frac{ax+1}{a+1}=x-13</math> and <math>\frac{ax+2001}{a+1}=x+27</math>. Subtracting, we have | Then, the given tells us that <math>\frac{ax+1}{a+1}=x-13</math> and <math>\frac{ax+2001}{a+1}=x+27</math>. Subtracting, we have | ||
Line 10: | Line 10: | ||
49x+1&=50x-650 \ | 49x+1&=50x-650 \ | ||
x&=\boxed{651}.\end{align*}</cmath> | x&=\boxed{651}.\end{align*}</cmath> | ||
+ | |||
+ | ==Solution 2== | ||
+ | Since this is a weighted average problem, the mean of <math>S</math> is <math>\frac{13}{27}</math> as far from <math>1</math> as it is from <math>2001</math> Thus, the mean of <math>S</math> is | ||
+ | <cmath>1 + \frac{13}{13 + 27}(2001 - 1) = \boxed{651}</cmath>. | ||
== See Also == | == See Also == |
Revision as of 14:02, 29 March 2018
Contents
[hide]Problem
A finite set of distinct real numbers has the following properties: the mean of is less than the mean of , and the mean of is more than the mean of . Find the mean of .
Solution
Let be the mean of . Let be the number of elements in . Then, the given tells us that and . Subtracting, we have We plug that into our very first formula, and get:
Solution 2
Since this is a weighted average problem, the mean of is as far from as it is from Thus, the mean of is .
See Also
2001 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 1 |
Followed by Problem 3 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.