Difference between revisions of "1960 AHSME Problems/Problem 20"

m (Solution)
(Solution)
Line 10: Line 10:
  
 
==Solution==
 
==Solution==
By the Binomial Theorem, each term of the expansion is <math>\binom{8}{n}(\frac{x^2}{2})^{8-n}(\frac{2}{x})^n</math>.
+
By the [[Binomial Theorem]], each term of the expansion is <math>\binom{8}{n}(\frac{x^2}{2})^{8-n}(\frac{2}{x})^n</math>.
  
We want the exponent of the x-term to be <math>7</math>, so  
+
We want the exponent of x to be <math>7</math>, so  
 
<cmath>2(8-n)-n=7</cmath>
 
<cmath>2(8-n)-n=7</cmath>
 
<cmath>16-3n=7</cmath>
 
<cmath>16-3n=7</cmath>

Revision as of 00:18, 13 May 2018

Problem

The coefficient of $x^7$ in the expansion of $(\frac{x^2}{2}-\frac{2}{x})^8$ is:

$\textbf{(A)}\ 56\qquad \textbf{(B)}\ -56\qquad \textbf{(C)}\ 14\qquad \textbf{(D)}\ -14\qquad \textbf{(E)}\ 0$

Solution

By the Binomial Theorem, each term of the expansion is $\binom{8}{n}(\frac{x^2}{2})^{8-n}(\frac{2}{x})^n$.

We want the exponent of x to be $7$, so \[2(8-n)-n=7\] \[16-3n=7\] \[n=3\]

If $n=3$, then the corresponding term is \[\binom{8}{3}(\frac{x^2}{2})^{5}(\frac{-2}{x})^3\] \[56 \cdot \frac{x^{10}}{32} \cdot \frac{-8}{x^3}\] \[-14x^7\]

The answer is $\boxed{\textbf{(D)}}$.

See Also

1960 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
All AHSME Problems and Solutions