Difference between revisions of "2011 AIME I Problems/Problem 9"
(→Solution) |
Tempaccount (talk | contribs) (Adding problem section) |
||
Line 1: | Line 1: | ||
+ | |||
+ | ==Problem== | ||
== Problem == | == Problem == | ||
Suppose <math>x</math> is in the interval <math>[0, \pi/2]</math> and <math>\log_{24\sin x} (24\cos x)=\frac{3}{2}</math>. Find <math>24\cot^2 x</math>. | Suppose <math>x</math> is in the interval <math>[0, \pi/2]</math> and <math>\log_{24\sin x} (24\cos x)=\frac{3}{2}</math>. Find <math>24\cot^2 x</math>. |
Revision as of 14:44, 9 August 2018
Contents
[hide]Problem
Problem
Suppose is in the interval and . Find .
Solution
We can rewrite the given expression as Square both sides and divide by to get Rewrite as Testing values using the rational root theorem gives as a root, does fall in the first quadrant so it satisfies the interval. There are now two ways to finish this problem.
First way: Since , we have Using the Pythagorean Identity gives us . Then we use the definition of to compute our final answer. .
Second way: Multiplying our old equation by gives So, .
See also
2011 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 8 |
Followed by Problem 10 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.