Difference between revisions of "2010 AIME I Problems/Problem 12"
Jheavner724 (talk | contribs) (→Problem) |
Tempaccount (talk | contribs) (Adding problem section) |
||
Line 1: | Line 1: | ||
+ | |||
+ | ==Problem== | ||
== Problem == | == Problem == | ||
Let <math>m \ge 3</math> be an [[integer]] and let <math>S = \{3,4,5,\ldots,m\}</math>. Find the smallest value of <math>m</math> such that for every [[partition]] of <math>S</math> into two subsets, at least one of the subsets contains integers <math>a</math>, <math>b</math>, and <math>c</math> (not necessarily distinct) such that <math>ab = c</math>. | Let <math>m \ge 3</math> be an [[integer]] and let <math>S = \{3,4,5,\ldots,m\}</math>. Find the smallest value of <math>m</math> such that for every [[partition]] of <math>S</math> into two subsets, at least one of the subsets contains integers <math>a</math>, <math>b</math>, and <math>c</math> (not necessarily distinct) such that <math>ab = c</math>. |
Revision as of 14:45, 9 August 2018
Contents
[hide]Problem
Problem
Let be an integer and let . Find the smallest value of such that for every partition of into two subsets, at least one of the subsets contains integers , , and (not necessarily distinct) such that .
Note: a partition of is a pair of sets , such that , .
Solution
We claim that is the minimal value of . Let the two partitioned sets be and ; we will try to partition and such that the condition is not satisfied. Without loss of generality, we place in . Then must be placed in , so must be placed in , and must be placed in . Then cannot be placed in any set, so we know is less than or equal to .
For , we can partition into and , and in neither set are there values where (since and ). Thus .
See Also
2010 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 11 |
Followed by Problem 13 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.