Difference between revisions of "2014 IMO Problems/Problem 3"
(→Solution) |
(→Solution) |
||
Line 4: | Line 4: | ||
Prove that line <math>BD</math> is tangent to the circumcircle of <math>\triangle{TSH}.</math> | Prove that line <math>BD</math> is tangent to the circumcircle of <math>\triangle{TSH}.</math> | ||
− | |||
− | |||
− | |||
− | |||
==Solution== | ==Solution== |
Revision as of 02:12, 8 September 2018
Problem
Convex quadrilateral has . Point is the foot of the perpendicular from to . Points and lie on sides and , respectively, such that lies inside and
Prove that line is tangent to the circumcircle of
Solution
Denote , , , , , , , . Since and , we have , .
Since , the tangent of the circumcircle of at point is perpendicular to ; therefore, the circumcenter of (point ) is on . Similarly, the circumcenter of (point ) is on . In addition, is the perpendicular bisector of .
Extend to meet circumcircle of at , and extend to meet circumcircle of at . Then, since , and are the perpendicular bisector of and , respectively; hence is the circumcenter of . Since and are midpoints on and , ; also, , so . Since is the circumcenter, is also the perpendicular bisector of . Hence,
We have Hence, , or Since quadrilaterals and are cyclic, we have , ; so, Hence, Similarly,
Now we apply law of Sines repeatedly on pairs of triangles. For and , , , , ; hence, For , , ; hence, For , , and similarly, ; hence, Coming , we have Therefore, , and . Let the circumcircle of meets at . We have, And, This proves is the diameter of the circle and the center of the circle is on AH.
Solution by .
Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.
See Also
2014 IMO (Problems) • Resources | ||
Preceded by Problem 2 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Problem 4 |
All IMO Problems and Solutions |