Difference between revisions of "1992 AIME Problems/Problem 14"

(Solution)
(Solution 1)
Line 3: Line 3:
  
 
== Solution 1==
 
== Solution 1==
Let <math>K_A=[BOC], K_B=[COA],</math> and <math>K_C=[AOB].</math>  Due to triangles <math>BOC</math> and <math>ABC</math> having the same base,  <cmath>\frac{AO}{OA'}+1=\frac{AA'}{OA'}=\frac{[ABC]}{[BOC]}=\frac{K_A+K_B+K_C}{K_A}.</cmath>  Therefore, we have \begin{align*}
+
Let <math>K_A=[BOC], K_B=[COA],</math> and <math>K_C=[AOB].</math>  Due to triangles <math>BOC</math> and <math>ABC</math> having the same base,  <cmath>\frac{AO}{OA'}+1=\frac{AA'}{OA'}=\frac{[ABC]}{[BOC]}=\frac{K_A+K_B+K_C}{K_A}.</cmath>  Therefore, we have
    \frac{AO}{OA'}=\frac{K_B+K_C}{K_A}\ \frac{BO}{OB'}=\frac{K_A+K_C}{K_B}\ \frac{CO}{OC'}=\frac{K_A+K_B}{K_C}.
+
<cmath>\frac{AO}{OA'}=\frac{K_B+K_C}{K_A}</cmath> <cmath>\frac{BO}{OB'}=\frac{K_A+K_C}{K_B}</cmath> <cmath>\frac{CO}{OC'}=\frac{K_A+K_B}{K_C}.</cmath>
\end{align*} Thus, we are given <cmath>\frac{K_B+K_C}{K_A}+\frac{K_A+K_C}{K_B}+\frac{K_A+K_B}{K_C}=92.</cmath> Combining and expanding gives <cmath>\frac{K_A^2K_B+K_AK_B^2+K_A^2K_C+K_AK_C^2+K_B^2K_C+K_BK_C^2}{K_AK_BK_C}=92.</cmath> We desire <math>\frac{(K_B+K_C)(K_C+K_A)(K_A+K_B)}{K_AK_BK_C}.</math> Expanding gives <cmath>\frac{K_A^2K_B+K_AK_B^2+K_A^2K_C+K_AK_C^2+K_B^2K_C+K_BK_C^2}{K_AK_BK_C}+2=\boxed{094}.</cmath>
+
Thus, we are given <cmath>\frac{K_B+K_C}{K_A}+\frac{K_A+K_C}{K_B}+\frac{K_A+K_B}{K_C}=92.</cmath> Combining and expanding gives <cmath>\frac{K_A^2K_B+K_AK_B^2+K_A^2K_C+K_AK_C^2+K_B^2K_C+K_BK_C^2}{K_AK_BK_C}=92.</cmath> We desire <math>\frac{(K_B+K_C)(K_C+K_A)(K_A+K_B)}{K_AK_BK_C}.</math> Expanding this gives <cmath>\frac{K_A^2K_B+K_AK_B^2+K_A^2K_C+K_AK_C^2+K_B^2K_C+K_BK_C^2}{K_AK_BK_C}+2=\boxed{094}.</cmath>
 
 
  
 
== Solution 2 ==
 
== Solution 2 ==

Revision as of 22:04, 5 December 2018

Problem

In triangle $ABC^{}_{}$, $A'$, $B'$, and $C'$ are on the sides $BC$, $AC^{}_{}$, and $AB^{}_{}$, respectively. Given that $AA'$, $BB'$, and $CC'$ are concurrent at the point $O^{}_{}$, and that $\frac{AO^{}_{}}{OA'}+\frac{BO}{OB'}+\frac{CO}{OC'}=92$, find $\frac{AO}{OA'}\cdot \frac{BO}{OB'}\cdot \frac{CO}{OC'}$.

Solution 1

Let $K_A=[BOC], K_B=[COA],$ and $K_C=[AOB].$ Due to triangles $BOC$ and $ABC$ having the same base, \[\frac{AO}{OA'}+1=\frac{AA'}{OA'}=\frac{[ABC]}{[BOC]}=\frac{K_A+K_B+K_C}{K_A}.\] Therefore, we have \[\frac{AO}{OA'}=\frac{K_B+K_C}{K_A}\] \[\frac{BO}{OB'}=\frac{K_A+K_C}{K_B}\] \[\frac{CO}{OC'}=\frac{K_A+K_B}{K_C}.\] Thus, we are given \[\frac{K_B+K_C}{K_A}+\frac{K_A+K_C}{K_B}+\frac{K_A+K_B}{K_C}=92.\] Combining and expanding gives \[\frac{K_A^2K_B+K_AK_B^2+K_A^2K_C+K_AK_C^2+K_B^2K_C+K_BK_C^2}{K_AK_BK_C}=92.\] We desire $\frac{(K_B+K_C)(K_C+K_A)(K_A+K_B)}{K_AK_BK_C}.$ Expanding this gives \[\frac{K_A^2K_B+K_AK_B^2+K_A^2K_C+K_AK_C^2+K_B^2K_C+K_BK_C^2}{K_AK_BK_C}+2=\boxed{094}.\]

Solution 2

Using mass points, let the weights of $A$, $B$, and $C$ be $a$, $b$, and $c$ respectively.

Then, the weights of $A'$, $B'$, and $C'$ are $b+c$, $c+a$, and $a+b$ respectively.

Thus, $\frac{AO^{}_{}}{OA'} = \frac{b+c}{a}$, $\frac{BO^{}_{}}{OB'} = \frac{c+a}{b}$, and $\frac{CO^{}_{}}{OC'} = \frac{a+b}{c}$.

Therefore: $\frac{AO}{OA'}\cdot \frac{BO}{OB'}\cdot \frac{CO}{OC'} = \frac{b+c}{a} \cdot \frac{c+a}{b} \cdot \frac{a+b}{c}$ $= \frac{2abc+b^2c+bc^2+c^2a+ca^2+a^2b+ab^2}{abc} =$

$2+\frac{bc(b+c)}{abc}+\frac{ca(c+a)}{abc}+\frac{ab(a+b)}{abc} = 2 + \frac{b+c}{a} + \frac{c+a}{b} + \frac{a+b}{c}$ $= 2 + \frac{AO^{}_{}}{OA'}+\frac{BO}{OB'}+\frac{CO}{OC'} = 2+92 = \boxed{094}$.

See also

1992 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png