Difference between revisions of "1957 AHSME Problems/Problem 42"

(Created page with "== Problem 42== If <math>S = i^n + i^{-n}</math>, where <math>i = \sqrt{-1}</math> and <math>n</math> is an integer, then the total number of possible distinct values for <m...")
 
m
 
(4 intermediate revisions by 3 users not shown)
Line 1: Line 1:
== Problem 42==
+
== Problem ==
 
   
 
   
 
If <math>S = i^n + i^{-n}</math>, where <math>i = \sqrt{-1}</math> and <math>n</math> is an integer, then the total number of possible distinct values for <math>S</math> is:  
 
If <math>S = i^n + i^{-n}</math>, where <math>i = \sqrt{-1}</math> and <math>n</math> is an integer, then the total number of possible distinct values for <math>S</math> is:  
  
<math>\textbf{(A)}\ 1\qquad \textbf{(B)}\ 2\qquad \textbf{(C)}\ 3\qquad \textbf{(D)}\ 4\qquad \textbf{(E)}\ \text{more than 4}  </math>  
+
<math>\textbf{(A)}\ 1\qquad \textbf{(B)}\ 2\qquad \textbf{(C)}\ 3\qquad \textbf{(D)}\ 4\qquad \textbf{(E)}\ \text{more than 4}  </math>
  
==Solution==
+
==Solution 1==
  
We first use the fact that <math>i^{-n}=\frac1{i^n}=\left(\frac1i\right)^n=(-i)^n</math>. Note that <math>i^4=1</math> and <math>(-i)^4=1</math>, so <math>i^n</math> and <math>(-i)^n</math> have are periodic with periods at most 4. Therefore, it suffices to check for <math>n=0,1,2,3</math>.
+
We first use the fact that <math>i^{-n}=\frac1{i^n}=\left(\frac1i\right)^n=(-i)^n</math>. Note that <math>i^4=1</math> and <math>(-i)^4=1</math>, so <math>i^n</math> and <math>(-i)^n</math> are periodic with periods at most 4. Therefore, it suffices to check for <math>n=0,1,2,3</math>.
  
  
Line 19: Line 19:
  
 
Hence, the answer is <math>\boxed{\textbf{(C)}\ 3}</math>.
 
Hence, the answer is <math>\boxed{\textbf{(C)}\ 3}</math>.
 +
 +
== Solution 2 ==
 +
 +
Notice that the powers of <math>i</math> cycle in cycles of 4. So let's see if <math>S</math> is periodic.
 +
 +
For <math>n=0</math>: we have <math>2</math>.
 +
 +
For <math>n=1</math>: we have <math>0</math>.
 +
 +
For <math>n=2</math>: we have <math>-2</math>.
 +
 +
For <math>n=3</math>: we have <math>0</math>.
 +
 +
For <math>n=4</math>: we have <math>2</math> again. Well, it can be seen that <math>S</math> cycles in periods of 4. Select <math>\fbox{\textbf{(C)}}</math>.
 +
 +
~hastapasta
 +
 +
== See Also ==
 +
{{AHSME 50p box|year=1957|num-b=41|num-a=43}}
 +
{{MAA Notice}}
 +
[[Category:AHSME]][[Category:AHSME Problems]]

Latest revision as of 09:13, 27 July 2024

Problem

If $S = i^n + i^{-n}$, where $i = \sqrt{-1}$ and $n$ is an integer, then the total number of possible distinct values for $S$ is:

$\textbf{(A)}\ 1\qquad \textbf{(B)}\ 2\qquad \textbf{(C)}\ 3\qquad \textbf{(D)}\ 4\qquad \textbf{(E)}\ \text{more than 4}$

Solution 1

We first use the fact that $i^{-n}=\frac1{i^n}=\left(\frac1i\right)^n=(-i)^n$. Note that $i^4=1$ and $(-i)^4=1$, so $i^n$ and $(-i)^n$ are periodic with periods at most 4. Therefore, it suffices to check for $n=0,1,2,3$.


For $n=0$, we have $i^0+(-i)^0=1+1=2$.

For $n=1$, we have $i^1+(-i)^1=i-i=0$.

For $n=2$, we have $i^2+(-i)^2=-1-1=-2$.

For $n=3$, we have $i^3+(-i)^3=-i+i=0$.

Hence, the answer is $\boxed{\textbf{(C)}\ 3}$.

Solution 2

Notice that the powers of $i$ cycle in cycles of 4. So let's see if $S$ is periodic.

For $n=0$: we have $2$.

For $n=1$: we have $0$.

For $n=2$: we have $-2$.

For $n=3$: we have $0$.

For $n=4$: we have $2$ again. Well, it can be seen that $S$ cycles in periods of 4. Select $\fbox{\textbf{(C)}}$.

~hastapasta

See Also

1957 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 41
Followed by
Problem 43
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png