Difference between revisions of "1979 AHSME Problems/Problem 25"

(Solution)
m (Solution 2)
 
(2 intermediate revisions by 2 users not shown)
Line 15: Line 15:
  
 
First, we divide <math>x^8</math> by <math>x+\frac{1}{2}</math> using synthetic division or some other method. The quotient is <math>x^7-\frac{1}{2}x^6+\frac{1}{4}x^5-\frac{1}{8}x^4+\frac{1}{16}x^3-\frac{1}{32}x^2+\frac{1}{64}x-\frac{1}{128}</math>, and the remainder is <math>\frac{1}{256}</math>. Then we plug the solution to <math>x+\frac{1}{2} = 0</math> into the quotient to find the remainder. Notice that every term in the quotient, when <math>x=-\frac{1}{2}</math>, evaluates to <math>-\frac{1}{128}</math>. Thus <math>r_2 =-\frac{8}{128} = \boxed{\textbf{(B) } -\frac{1}{16}}</math>.
 
First, we divide <math>x^8</math> by <math>x+\frac{1}{2}</math> using synthetic division or some other method. The quotient is <math>x^7-\frac{1}{2}x^6+\frac{1}{4}x^5-\frac{1}{8}x^4+\frac{1}{16}x^3-\frac{1}{32}x^2+\frac{1}{64}x-\frac{1}{128}</math>, and the remainder is <math>\frac{1}{256}</math>. Then we plug the solution to <math>x+\frac{1}{2} = 0</math> into the quotient to find the remainder. Notice that every term in the quotient, when <math>x=-\frac{1}{2}</math>, evaluates to <math>-\frac{1}{128}</math>. Thus <math>r_2 =-\frac{8}{128} = \boxed{\textbf{(B) } -\frac{1}{16}}</math>.
 +
 +
==Solution 2==
 +
Using the remainder theorem, we see that the remainder upon dividing <math>x^8</math> by <math>x+\frac{1}{2}</math> is equal to <math>\left(-\frac{1}{2}\right)^8 = \frac{1}{256}.</math> Thus, we have that
 +
<cmath>x^8 = \left(x+\frac{1}{2}\right)Q(x) + \frac{1}{256}.</cmath>
 +
Isolating <math>Q(x),</math> we see
 +
<cmath>\frac{x^8-\frac{1}{256}}{x+\frac{1}{2}} = Q(x).</cmath>
 +
Using the difference of squares factorization repeatedly, we get
 +
<cmath>\frac{\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)\left(x^2+\frac{1}{2^2}\right)\left(x^4+\frac{1}{2^4}\right)}{x+\frac{1}{2}}=\left(x-\frac{1}{2}\right)\left(x^2+\frac{1}{2^2}\right)\left(x^4+\frac{1}{2^4}\right)=Q(x).</cmath>
 +
Finally, plugging in <math>x=-\frac{1}{2}</math> again, the final answer is
 +
<cmath>(-1)\left(\frac{1}{2}\right)\left(\frac{1}{8}\right)</cmath>
 +
<cmath>=\boxed{-\frac{1}{16}}.</cmath>
 +
 +
~anduran
  
 
== See also ==
 
== See also ==
{{AHSME box|year=1979|num-b=24|num-a=25}}   
+
{{AHSME box|year=1979|num-b=24|num-a=26}}   
  
 
[[Category: Intermediate Algebra Problems]]
 
[[Category: Intermediate Algebra Problems]]
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 19:34, 29 August 2024

Problem 25

If $q_1 ( x )$ and $r_ 1$ are the quotient and remainder, respectively, when the polynomial $x^ 8$ is divided by $x + \tfrac{1}{2}$ , and if $q_ 2 ( x )$ and $r_2$ are the quotient and remainder, respectively, when $q_ 1 ( x )$ is divided by $x + \tfrac{1}{2}$, then $r_2$ equals

$\textbf{(A) }\frac{1}{256}\qquad \textbf{(B) }-\frac{1}{16}\qquad \textbf{(C) }1\qquad \textbf{(D) }-16\qquad \textbf{(E) }256$

Solution

Solution by e_power_pi_times_i

First, we divide $x^8$ by $x+\frac{1}{2}$ using synthetic division or some other method. The quotient is $x^7-\frac{1}{2}x^6+\frac{1}{4}x^5-\frac{1}{8}x^4+\frac{1}{16}x^3-\frac{1}{32}x^2+\frac{1}{64}x-\frac{1}{128}$, and the remainder is $\frac{1}{256}$. Then we plug the solution to $x+\frac{1}{2} = 0$ into the quotient to find the remainder. Notice that every term in the quotient, when $x=-\frac{1}{2}$, evaluates to $-\frac{1}{128}$. Thus $r_2 =-\frac{8}{128} = \boxed{\textbf{(B) } -\frac{1}{16}}$.

Solution 2

Using the remainder theorem, we see that the remainder upon dividing $x^8$ by $x+\frac{1}{2}$ is equal to $\left(-\frac{1}{2}\right)^8 = \frac{1}{256}.$ Thus, we have that \[x^8 = \left(x+\frac{1}{2}\right)Q(x) + \frac{1}{256}.\] Isolating $Q(x),$ we see \[\frac{x^8-\frac{1}{256}}{x+\frac{1}{2}} = Q(x).\] Using the difference of squares factorization repeatedly, we get \[\frac{\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)\left(x^2+\frac{1}{2^2}\right)\left(x^4+\frac{1}{2^4}\right)}{x+\frac{1}{2}}=\left(x-\frac{1}{2}\right)\left(x^2+\frac{1}{2^2}\right)\left(x^4+\frac{1}{2^4}\right)=Q(x).\] Finally, plugging in $x=-\frac{1}{2}$ again, the final answer is \[(-1)\left(\frac{1}{2}\right)\left(\frac{1}{8}\right)\] \[=\boxed{-\frac{1}{16}}.\]

~anduran

See also

1979 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Problem 26
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png