Difference between revisions of "2016 AMC 10A Problems/Problem 19"

m (Solution 2(Coordinate Bash))
m (Solution 3(Coordinate Bash))
 
(27 intermediate revisions by 13 users not shown)
Line 5: Line 5:
 
<math>\textbf{(A) } 7 \qquad \textbf{(B) } 9 \qquad \textbf{(C) } 12 \qquad \textbf{(D) } 15 \qquad \textbf{(E) } 20</math>
 
<math>\textbf{(A) } 7 \qquad \textbf{(B) } 9 \qquad \textbf{(C) } 12 \qquad \textbf{(D) } 15 \qquad \textbf{(E) } 20</math>
  
== Solution 1==
+
== Solution 1 (Similar Triangles)==
  
 
<asy>
 
<asy>
Line 24: Line 24:
 
</asy>
 
</asy>
  
Use similar triangles. Our goal is to put the ratio in terms of <math>{BD}</math>. Since <math>\triangle APD \sim \triangle EPB,</math> <math>\frac{DP}{PB}=\frac{AD}{BE}=3.</math> Similarly, <math>\frac{DQ}{QB}=\frac{3}{2}</math>. This means that <math>{DQ}=\frac{3\cdot BD}{5}</math>. As <math>\triangle ADP</math> and <math>\triangle BEP</math> are similar, we see that <math>\frac{PD}{PB}=\frac{3}{1}</math>. Thus <math>PB=\frac{BD}{4}</math>. Therefore, <math>r:s:t=\frac{1}{4}:\frac{2}{5}-\frac{1}{4}:\frac{3}{5}=5:3:12,</math> so <math>r+s+t=\boxed{\textbf{(E) }20.}</math>
+
Use similar triangles. Our goal is to put the ratio in terms of <math>{BD}</math>. Since <math>\triangle APD \sim \triangle EPB,</math> <math>\frac{DP}{PB}=\frac{AD}{BE}=3.</math> Therefore, <math>PB=\frac{BD}{4}</math>. Similarly, <math>\frac{DQ}{QB}=\frac{3}{2}</math>. This means that <math>{DQ}=\frac{3\cdot BD}{5}</math>. Therefore, <math>r:s:t=\frac{1}{4}:\frac{2}{5}-\frac{1}{4}:\frac{3}{5}=5:3:12,</math> so <math>r+s+t=\boxed{\textbf{(E) }20.}</math>
  
==Solution 2(Coordinate Bash)==
+
==Solution 2 (Mass points and Similar Triangles - Easy)==
 +
<asy>
 +
size(9cm);
 +
pair D=(0,0), C=(6,0), B=(6,3), A=(0,3), G=(2, 1), H=(9, 0);
 +
draw(A--B--C--D--cycle);
 +
draw(B--D);
 +
draw(A--(6,2));
 +
draw(A--(6,1));
 +
draw(A--H);
 +
draw((6,1)--G);
 +
draw(D--H);
 +
label("$A$", A, dir(135));
 +
label("$B$", B, dir(45));
 +
label("$C$", C, dir(-45));
 +
label("$D$", D, dir(-135));
 +
label("$Q$", extension(A,(6,1),B,D),dir(-90));
 +
label("$P$", extension(A,(6,2),B,D), dir(90));
 +
label("$F$", (6,1), dir(45));
 +
label("$E$", (6,2), dir(45));
 +
label("$H$", H, dir(0));
 +
label("$G$", G, dir(135));
 +
</asy>
  
We can set coordinates for the points. <math>D=(0,0), C=(6,0),  B=(6,3),</math> and <math>A=(0,3)</math>. The line <math>BD</math>'s equation is <math>y = \frac{1}{2}x</math>, line <math>AE</math>'s equation is <math>y = -\frac{1}{6}x + 3</math>, and line <math>AF</math>'s equation is <math>y = -\frac{1}{3}x + 3</math>. Adding the equations of lines <math>BD</math> and <math>AE</math>, we find that the coordinates of <math>P</math> are <math>(\frac{9}{2},\frac{9}{4})</math>. Furthermore we find that the coordinates of <math>Q</math> are <math>(\frac{18}{5}, \frac{9}{5})</math>. Using the [[Pythagorean Theorem]], we get that the length of <math>QD</math> is <math>\sqrt{(\frac{18}{5})^2+(\frac{9}{5})^2} = \sqrt{\frac{405}{25}} = \frac{\sqrt{405}}{5} = \frac{9\sqrt{5}}{5}</math>, and the length of <math>DP</math> is <math>\sqrt{(\frac{9}{2})^2+(\frac{9}{4})^2} = \sqrt{\frac{81}{4} + \frac{81}{16}} = \sqrt{\frac{405}{16}} = \frac{\sqrt{405}}{4} = \frac{9\sqrt{5}}{4}.</math> <math>PQ = DP - DQ = \frac{9\sqrt{5}}{4} - \frac{9\sqrt{5}}{5} = \frac{9\sqrt{5}}{20}.</math> The length of <math>DB = \sqrt{6^2 + 3^2} = \sqrt{45} = 3\sqrt{5}</math>. Then <math>BP= 3\sqrt{5} - \frac{9\sqrt{5}}{4} = \frac{3\sqrt{5}}{4}.</math> The ratio <math>BP : PQ : QD = \frac{3\sqrt{5}}{4} : \frac{9\sqrt{5}}{20} : \frac{9\sqrt{5}}{5} = 15\sqrt{5} : 9\sqrt{5} : 36\sqrt{5} = 15 : 9 : 36 = 5 : 3 : 12.</math> Then <math>r, s,</math> and <math>t</math> is <math>5, 3,</math> and <math>12</math>, respectively. The problem tells us to find <math>r + s + t</math>, so <math>5 + 3 + 12 = \boxed{\textbf{(E) }20}</math>
+
This problem breaks down into finding <math>QP:PB</math> and <math>DQ:QB</math>. We can find the first using mass points, and the second using similar triangles.
  
An alternate solution is to perform the same operations, but only solve for the x-coordinates. By similar triangles, the ratios will be the same.
+
Draw point <math>G</math> on <math>DB</math> such that <math>FG\parallel CD</math>. Then, by similar triangles <math>FG=BF\cdot 2=4</math>. Again, by similar triangles <math>AQB</math> and <math>FQG</math>, <math>AQ:FQ=AB:FG=6:4=3:2</math>. Now we begin Mass Points.
  
==Solution 3==
+
We will consider the triangle <math>ABF</math> with center <math>P</math>, so that <math>E</math> balances <math>B</math> and <math>F</math>, and <math>Q</math> balances <math>A</math> and <math>F</math>. Assign a mass of <math>1</math> to <math>B</math>. Then, <math>BE:FE=1:1</math> so <math>F=B=1</math>. By mass points addition, <math>E=B+F=2</math> since <math>E</math> balances <math>B</math> and <math>F</math>.
 +
Also, <math>AQ:QF=3:2</math> so <math>A=\frac{2}{3}F=\frac{2}{3}</math> so <math>Q=\frac{5}{3}</math>. Then, <math>QP:PB=1:\frac{5}{3}=3:5</math>.
 +
 
 +
To calculate <math>DQ:BQ</math>, extend <math>AF</math> past <math>F</math> to point <math>H</math> such that <math>H</math> lies on <math>BC</math>. Then <math>AFB</math> is similar to <math>HAD</math> so <math>DH=3\cdot AD=9</math>. Also, <math>AQB</math> is similar to <math>HQD</math> so <math>DQ:BQ=9:6=3:2</math>
 +
 
 +
Now, we wish to get <math>DQ:QP:PB</math>. Observe that <math>BQ=QP+PB</math>. So, <math>DQ:BQ=DQ:QP+PB=3:2</math> so (since <math>QP:PB=3:5</math> has sum <math>3+5=8</math>), <math>DQ:QP+PB=3:2=12:8</math>. now, we may combine the two and get <math>DQ:QP:PB=12:3:5</math> so <math>r+s+t=12+3+5=\boxed{\textbf{(E) }20}</math>.
 +
 
 +
~Firebolt360(minor edits by vadava_lx)
 +
 
 +
==Solution 3(Coordinate Bash)==
 +
 
 +
We can set coordinates for the points. <math>D=(0,0), C=(6,0),  B=(6,3),</math> and <math>A=(0,3)</math>. The line <math>BD</math>'s equation is <math>y = \frac{1}{2}x</math>, line <math>AE</math>'s equation is <math>y = -\frac{1}{6}x + 3</math>, and line <math>AF</math>'s equation is <math>y = -\frac{1}{3}x + 3</math>. Adding the equations of lines <math>BD</math> and <math>AE</math>, we find that the coordinates of <math>P</math> are <math>\left(\frac{9}{2},\frac{9}{4}\right)</math>. Furthermore we find that the coordinates of <math>Q</math> are <math>\left(\frac{18}{5}, \frac{9}{5}\right)</math>. Using the [[Pythagorean Theorem]], we get that the length of <math>QD</math> is <math>\sqrt{\left(\frac{18}{5}\right)^2+\left(\frac{9}{5}\right)^2} = \sqrt{\frac{405}{25}} = \frac{\sqrt{405}}{5} = \frac{9\sqrt{5}}{5}</math>, and the length of <math>DP</math> is <math>\sqrt{\left(\frac{9}{2}\right)^2+\left(\frac{9}{4}\right)^2} = \sqrt{\frac{81}{4} + \frac{81}{16}} = \sqrt{\frac{405}{16}} = \frac{\sqrt{405}}{4} = \frac{9\sqrt{5}}{4}.</math> <math>PQ = DP - DQ = \frac{9\sqrt{5}}{4} - \frac{9\sqrt{5}}{5} = \frac{9\sqrt{5}}{20}.</math> The length of <math>DB = \sqrt{6^2 + 3^2} = \sqrt{45} = 3\sqrt{5}</math>. Then <math>BP= 3\sqrt{5} - \frac{9\sqrt{5}}{4} = \frac{3\sqrt{5}}{4}.</math> The ratio <math>BP : PQ : QD = \frac{3\sqrt{5}}{4} : \frac{9\sqrt{5}}{20} : \frac{9\sqrt{5}}{5} = 15\sqrt{5} : 9\sqrt{5} : 36\sqrt{5} = 15 : 9 : 36 = 5 : 3 : 12.</math> Then <math>r, s,</math> and <math>t</math> is <math>5, 3,</math> and <math>12</math>, respectively. The problem tells us to find <math>r + s + t</math>, so <math>5 + 3 + 12 = \boxed{\textbf{(E) }20}</math> ~ minor <math>\LaTeX</math> edits by dolphin7
 +
 
 +
==Solution 4==
  
 
Extend <math>AF</math> to meet <math>CD</math> at point <math>T</math>. Since <math>FC=1</math> and <math>BF=2</math>, <math>TC=3</math> by similar triangles <math>\triangle TFC</math> and <math>\triangle AFB</math>. It follows that <math>\frac{BQ}{QD}=\frac{BP+PQ}{QD}=\frac{2}{3}</math>. Now, using similar triangles <math>\triangle BEP</math> and <math>\triangle DAP</math>, <math>\frac{BP}{PD}=\frac{BP}{PQ+QD}=\frac{1}{3}</math>. WLOG let <math>BP=1</math>. Solving for <math>PQ, QD</math> gives <math>PQ=\frac{3}{5}</math> and <math>QD=\frac{12}{5}</math>. So our desired ratio is <math>5:3:12</math> and <math>5+3+12=\boxed{\textbf{(E) } 20}</math>.
 
Extend <math>AF</math> to meet <math>CD</math> at point <math>T</math>. Since <math>FC=1</math> and <math>BF=2</math>, <math>TC=3</math> by similar triangles <math>\triangle TFC</math> and <math>\triangle AFB</math>. It follows that <math>\frac{BQ}{QD}=\frac{BP+PQ}{QD}=\frac{2}{3}</math>. Now, using similar triangles <math>\triangle BEP</math> and <math>\triangle DAP</math>, <math>\frac{BP}{PD}=\frac{BP}{PQ+QD}=\frac{1}{3}</math>. WLOG let <math>BP=1</math>. Solving for <math>PQ, QD</math> gives <math>PQ=\frac{3}{5}</math> and <math>QD=\frac{12}{5}</math>. So our desired ratio is <math>5:3:12</math> and <math>5+3+12=\boxed{\textbf{(E) } 20}</math>.
  
==Solution 4 (Mass Points)==
+
==Solution 5 (Mass Points)==
  
 
Draw line segment <math>AC</math>, and call the intersection between <math>AC</math> and <math>BD</math> point <math>K</math>. In <math>\delta ABC</math>, observe that <math>BE:EC=1:2</math> and <math>AK:KC=1:1</math>. Using mass points, find that <math>BP:PK=1:1</math>. Again utilizing <math>\delta ABC</math>, observe that <math>BF:FC=2:1</math> and <math>AK:KC=1:1</math>. Use mass points to find that <math>BQ:QK=4:1</math>. Now, draw a line segment with points <math>B</math>,<math>P</math>,<math>Q</math>, and <math>K</math> ordered from left to right. Set the values <math>BP=x</math>,<math>PK=x</math>,<math>BQ=4y</math> and <math>QK=y</math>. Setting both sides segment <math>BK</math> equal, we get <math>y= \frac{2}{5}x</math>. Plugging in and solving gives <math>QK= \frac{2}{5}x</math>, <math>PQ=\frac{3}{5}x</math>,<math>BP=x</math>. The question asks for <math>BP:PQ:QD</math>, so we add <math>2x</math> to <math>QK</math> and multiply the ratio by <math>5</math> to create integers. This creates <math>5(1:\frac{3}{5}:\frac{12}{5})= 5:3:12</math>. This sums up to <math>3+5+12=\boxed{\textbf{(E) }20}</math>
 
Draw line segment <math>AC</math>, and call the intersection between <math>AC</math> and <math>BD</math> point <math>K</math>. In <math>\delta ABC</math>, observe that <math>BE:EC=1:2</math> and <math>AK:KC=1:1</math>. Using mass points, find that <math>BP:PK=1:1</math>. Again utilizing <math>\delta ABC</math>, observe that <math>BF:FC=2:1</math> and <math>AK:KC=1:1</math>. Use mass points to find that <math>BQ:QK=4:1</math>. Now, draw a line segment with points <math>B</math>,<math>P</math>,<math>Q</math>, and <math>K</math> ordered from left to right. Set the values <math>BP=x</math>,<math>PK=x</math>,<math>BQ=4y</math> and <math>QK=y</math>. Setting both sides segment <math>BK</math> equal, we get <math>y= \frac{2}{5}x</math>. Plugging in and solving gives <math>QK= \frac{2}{5}x</math>, <math>PQ=\frac{3}{5}x</math>,<math>BP=x</math>. The question asks for <math>BP:PQ:QD</math>, so we add <math>2x</math> to <math>QK</math> and multiply the ratio by <math>5</math> to create integers. This creates <math>5(1:\frac{3}{5}:\frac{12}{5})= 5:3:12</math>. This sums up to <math>3+5+12=\boxed{\textbf{(E) }20}</math>
  
==Solution 5 (Cheap Solution)==
+
==Solution 6 (Easy Coord Bash)==
Use your ruler (it is recommended that you bring a ruler and protractor to AMC10 tests) and accurately draw the diagram as one in solution 1, then measure the length of the segments, you should get a ratio of <math>r:s:t</math> being <math>\frac{5}{3}:1:\frac{12}{3}</math>, multiplying each side by <math>3</math> the result is <math>r+s+t = 5+3+12 = \boxed{\textbf{(E) }20}</math>
+
We set coordinates for the points. Let <math>A=(0,3),  B=(6,3), C=(6,0)</math> and <math>D=(0,0)</math>. Then the equation of line <math>AE</math> is <math>y = -\frac{1}{6}x + 3,</math> the equation of line <math>AF</math> is <math>y = -\frac{1}{3}x + 3,</math> and the equation of line <math>BD</math> is <math>y = \frac{1}{2}x</math>. We find that the x-coordinate of point <math>P</math> is <math>\frac 9 2</math> by solving <math> -\frac{1}{6}x + 3=\frac{1}{2}x.</math> Similarly we find that the x-coordinate of point <math>Q</math> is <math>\frac {18} 5</math> by solving <math>-\frac{1}{3}x + 3=\frac{1}{2}x.</math> It follows that <math>BP:PQ:QD=6-\frac 9 2 : \frac 9 2 - \frac {18} 5 : \frac {18} 5= \frac 3 2 : \frac 9 {10} : \frac {18} 5 = 5:3:12.</math> Hence <math>r,s,t=5,3,12</math> and <math>r+s+t=5+3+12=\boxed{\textbf{(E) } 20}.</math> ~ Solution by dolphin7
 +
 
 +
==Video Solution==
 +
 
 +
https://www.youtube.com/watch?v=aG9JiBMd0ag
 +
 
 +
==Video Solution 2==
 +
https://youtu.be/us3e2jMjWnw
 +
 
 +
~IceMatrix
 +
 
 +
== Video Solution 3 by OmegaLearn ==
 +
https://youtu.be/4_x1sgcQCp4?t=3406
 +
 
 +
~ pi_is_3.14
 +
 
 +
==See Also==
  
==See Also:)==
 
 
{{AMC10 box|year=2016|ab=A|num-b=18|num-a=20}}
 
{{AMC10 box|year=2016|ab=A|num-b=18|num-a=20}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 17:49, 3 October 2024

Problem

In rectangle $ABCD,$ $AB=6$ and $BC=3$. Point $E$ between $B$ and $C$, and point $F$ between $E$ and $C$ are such that $BE=EF=FC$. Segments $\overline{AE}$ and $\overline{AF}$ intersect $\overline{BD}$ at $P$ and $Q$, respectively. The ratio $BP:PQ:QD$ can be written as $r:s:t$ where the greatest common factor of $r,s,$ and $t$ is $1.$ What is $r+s+t$?

$\textbf{(A) } 7 \qquad \textbf{(B) } 9 \qquad \textbf{(C) } 12 \qquad \textbf{(D) } 15 \qquad \textbf{(E) } 20$

Solution 1 (Similar Triangles)

[asy] size(6cm); pair D=(0,0), C=(6,0), B=(6,3), A=(0,3); draw(A--B--C--D--cycle); draw(B--D); draw(A--(6,2)); draw(A--(6,1)); label("$A$", A, dir(135)); label("$B$", B, dir(45)); label("$C$", C, dir(-45)); label("$D$", D, dir(-135)); label("$Q$", extension(A,(6,1),B,D),dir(-90)); label("$P$", extension(A,(6,2),B,D), dir(90)); label("$F$", (6,1), dir(0)); label("$E$", (6,2), dir(0)); [/asy]

Use similar triangles. Our goal is to put the ratio in terms of ${BD}$. Since $\triangle APD \sim \triangle EPB,$ $\frac{DP}{PB}=\frac{AD}{BE}=3.$ Therefore, $PB=\frac{BD}{4}$. Similarly, $\frac{DQ}{QB}=\frac{3}{2}$. This means that ${DQ}=\frac{3\cdot BD}{5}$. Therefore, $r:s:t=\frac{1}{4}:\frac{2}{5}-\frac{1}{4}:\frac{3}{5}=5:3:12,$ so $r+s+t=\boxed{\textbf{(E) }20.}$

Solution 2 (Mass points and Similar Triangles - Easy)

[asy] size(9cm); pair D=(0,0), C=(6,0), B=(6,3), A=(0,3), G=(2, 1), H=(9, 0); draw(A--B--C--D--cycle); draw(B--D); draw(A--(6,2)); draw(A--(6,1)); draw(A--H); draw((6,1)--G); draw(D--H); label("$A$", A, dir(135)); label("$B$", B, dir(45)); label("$C$", C, dir(-45)); label("$D$", D, dir(-135)); label("$Q$", extension(A,(6,1),B,D),dir(-90)); label("$P$", extension(A,(6,2),B,D), dir(90)); label("$F$", (6,1), dir(45)); label("$E$", (6,2), dir(45)); label("$H$", H, dir(0)); label("$G$", G, dir(135)); [/asy]

This problem breaks down into finding $QP:PB$ and $DQ:QB$. We can find the first using mass points, and the second using similar triangles.

Draw point $G$ on $DB$ such that $FG\parallel CD$. Then, by similar triangles $FG=BF\cdot 2=4$. Again, by similar triangles $AQB$ and $FQG$, $AQ:FQ=AB:FG=6:4=3:2$. Now we begin Mass Points.

We will consider the triangle $ABF$ with center $P$, so that $E$ balances $B$ and $F$, and $Q$ balances $A$ and $F$. Assign a mass of $1$ to $B$. Then, $BE:FE=1:1$ so $F=B=1$. By mass points addition, $E=B+F=2$ since $E$ balances $B$ and $F$. Also, $AQ:QF=3:2$ so $A=\frac{2}{3}F=\frac{2}{3}$ so $Q=\frac{5}{3}$. Then, $QP:PB=1:\frac{5}{3}=3:5$.

To calculate $DQ:BQ$, extend $AF$ past $F$ to point $H$ such that $H$ lies on $BC$. Then $AFB$ is similar to $HAD$ so $DH=3\cdot AD=9$. Also, $AQB$ is similar to $HQD$ so $DQ:BQ=9:6=3:2$

Now, we wish to get $DQ:QP:PB$. Observe that $BQ=QP+PB$. So, $DQ:BQ=DQ:QP+PB=3:2$ so (since $QP:PB=3:5$ has sum $3+5=8$), $DQ:QP+PB=3:2=12:8$. now, we may combine the two and get $DQ:QP:PB=12:3:5$ so $r+s+t=12+3+5=\boxed{\textbf{(E) }20}$.

~Firebolt360(minor edits by vadava_lx)

Solution 3(Coordinate Bash)

We can set coordinates for the points. $D=(0,0), C=(6,0),  B=(6,3),$ and $A=(0,3)$. The line $BD$'s equation is $y = \frac{1}{2}x$, line $AE$'s equation is $y = -\frac{1}{6}x + 3$, and line $AF$'s equation is $y = -\frac{1}{3}x + 3$. Adding the equations of lines $BD$ and $AE$, we find that the coordinates of $P$ are $\left(\frac{9}{2},\frac{9}{4}\right)$. Furthermore we find that the coordinates of $Q$ are $\left(\frac{18}{5}, \frac{9}{5}\right)$. Using the Pythagorean Theorem, we get that the length of $QD$ is $\sqrt{\left(\frac{18}{5}\right)^2+\left(\frac{9}{5}\right)^2} = \sqrt{\frac{405}{25}} = \frac{\sqrt{405}}{5} = \frac{9\sqrt{5}}{5}$, and the length of $DP$ is $\sqrt{\left(\frac{9}{2}\right)^2+\left(\frac{9}{4}\right)^2} = \sqrt{\frac{81}{4} + \frac{81}{16}} = \sqrt{\frac{405}{16}} = \frac{\sqrt{405}}{4} = \frac{9\sqrt{5}}{4}.$ $PQ = DP - DQ = \frac{9\sqrt{5}}{4} - \frac{9\sqrt{5}}{5} = \frac{9\sqrt{5}}{20}.$ The length of $DB = \sqrt{6^2 + 3^2} = \sqrt{45} = 3\sqrt{5}$. Then $BP= 3\sqrt{5} - \frac{9\sqrt{5}}{4} = \frac{3\sqrt{5}}{4}.$ The ratio $BP : PQ : QD = \frac{3\sqrt{5}}{4} : \frac{9\sqrt{5}}{20} : \frac{9\sqrt{5}}{5} = 15\sqrt{5} : 9\sqrt{5} : 36\sqrt{5} = 15 : 9 : 36 = 5 : 3 : 12.$ Then $r, s,$ and $t$ is $5, 3,$ and $12$, respectively. The problem tells us to find $r + s + t$, so $5 + 3 + 12 = \boxed{\textbf{(E) }20}$ ~ minor $\LaTeX$ edits by dolphin7

Solution 4

Extend $AF$ to meet $CD$ at point $T$. Since $FC=1$ and $BF=2$, $TC=3$ by similar triangles $\triangle TFC$ and $\triangle AFB$. It follows that $\frac{BQ}{QD}=\frac{BP+PQ}{QD}=\frac{2}{3}$. Now, using similar triangles $\triangle BEP$ and $\triangle DAP$, $\frac{BP}{PD}=\frac{BP}{PQ+QD}=\frac{1}{3}$. WLOG let $BP=1$. Solving for $PQ, QD$ gives $PQ=\frac{3}{5}$ and $QD=\frac{12}{5}$. So our desired ratio is $5:3:12$ and $5+3+12=\boxed{\textbf{(E) } 20}$.

Solution 5 (Mass Points)

Draw line segment $AC$, and call the intersection between $AC$ and $BD$ point $K$. In $\delta ABC$, observe that $BE:EC=1:2$ and $AK:KC=1:1$. Using mass points, find that $BP:PK=1:1$. Again utilizing $\delta ABC$, observe that $BF:FC=2:1$ and $AK:KC=1:1$. Use mass points to find that $BQ:QK=4:1$. Now, draw a line segment with points $B$,$P$,$Q$, and $K$ ordered from left to right. Set the values $BP=x$,$PK=x$,$BQ=4y$ and $QK=y$. Setting both sides segment $BK$ equal, we get $y= \frac{2}{5}x$. Plugging in and solving gives $QK= \frac{2}{5}x$, $PQ=\frac{3}{5}x$,$BP=x$. The question asks for $BP:PQ:QD$, so we add $2x$ to $QK$ and multiply the ratio by $5$ to create integers. This creates $5(1:\frac{3}{5}:\frac{12}{5})= 5:3:12$. This sums up to $3+5+12=\boxed{\textbf{(E) }20}$

Solution 6 (Easy Coord Bash)

We set coordinates for the points. Let $A=(0,3),  B=(6,3), C=(6,0)$ and $D=(0,0)$. Then the equation of line $AE$ is $y = -\frac{1}{6}x + 3,$ the equation of line $AF$ is $y = -\frac{1}{3}x + 3,$ and the equation of line $BD$ is $y = \frac{1}{2}x$. We find that the x-coordinate of point $P$ is $\frac 9 2$ by solving $-\frac{1}{6}x + 3=\frac{1}{2}x.$ Similarly we find that the x-coordinate of point $Q$ is $\frac {18} 5$ by solving $-\frac{1}{3}x + 3=\frac{1}{2}x.$ It follows that $BP:PQ:QD=6-\frac 9 2 : \frac 9 2 - \frac {18} 5 : \frac {18} 5= \frac 3 2 : \frac 9 {10} : \frac {18} 5 = 5:3:12.$ Hence $r,s,t=5,3,12$ and $r+s+t=5+3+12=\boxed{\textbf{(E) } 20}.$ ~ Solution by dolphin7

Video Solution

https://www.youtube.com/watch?v=aG9JiBMd0ag

Video Solution 2

https://youtu.be/us3e2jMjWnw

~IceMatrix

Video Solution 3 by OmegaLearn

https://youtu.be/4_x1sgcQCp4?t=3406

~ pi_is_3.14

See Also

2016 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png