Difference between revisions of "1978 AHSME Problems/Problem 1"

(Solution 1)
 
(4 intermediate revisions by 2 users not shown)
Line 11: Line 11:
 
==Solution 1==
 
==Solution 1==
 
By guessing and checking, 2 works.  
 
By guessing and checking, 2 works.  
<math>\frac{2}{x} = \boxed{\textbf{(D)  }1}</math>
+
<math>\frac{2}{x} = \boxed{\textbf{(B)  }1}</math>
 +
~awin
 +
 
 +
==Solution 2==
 +
Multiplying each side by <math>x^2</math>, we get <math>x^2-4x+4 = 0</math>. Factoring, we get <math>(x-2)(x-2) = 0</math>. Therefore, <math>x = 2</math>.
 +
<math>\frac{2}{x} = \boxed{\textbf{(B)  }1}</math>
 +
~awin
 +
 
 +
==Solution 3==
 +
Directly factoring, we get <math>(1-\frac{2}{x})^2 = 0</math>. Thus <math>\frac{2}{x}</math> must equal <math>\boxed{\textbf{(B)  }1}</math>
 +
 
 +
==See Also==
 +
{{AHSME box|year=1978|num-b=0|num-a=2}}
 +
{{MAA Notice}}

Latest revision as of 10:59, 13 February 2021

Problem 1

If $1-\frac{4}{x}+\frac{4}{x^2}=0$, then $\frac{2}{x}$ equals

$\textbf{(A) }-1\qquad \textbf{(B) }1\qquad \textbf{(C) }2\qquad \textbf{(D) }-1\text{ or }2\qquad  \textbf{(E) }-1\text{ or }-2$

Solution 1

By guessing and checking, 2 works. $\frac{2}{x} = \boxed{\textbf{(B)  }1}$ ~awin

Solution 2

Multiplying each side by $x^2$, we get $x^2-4x+4 = 0$. Factoring, we get $(x-2)(x-2) = 0$. Therefore, $x = 2$. $\frac{2}{x} = \boxed{\textbf{(B)  }1}$ ~awin

Solution 3

Directly factoring, we get $(1-\frac{2}{x})^2 = 0$. Thus $\frac{2}{x}$ must equal $\boxed{\textbf{(B)  }1}$

See Also

1978 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 0
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png