Difference between revisions of "2003 AMC 12B Problems/Problem 21"

(Solution)
m
 
(13 intermediate revisions by 3 users not shown)
Line 8: Line 8:
 
\qquad\mathrm{(E)}\ \frac{1}{2}</math>
 
\qquad\mathrm{(E)}\ \frac{1}{2}</math>
  
== Solution ==
+
== Solution 1 (Trigonometry) ==
 
By the [[Law of Cosines]],
 
By the [[Law of Cosines]],
 
<cmath>\begin{align*}
 
<cmath>\begin{align*}
Line 15: Line 15:
 
\end{align*}</cmath>
 
\end{align*}</cmath>
  
It follows that <math>0 < \alpha < \frac {\pi}3</math>, and the probability is <math>\frac{\pi/3}{\pi} = \frac 13 \Rightarrow \mathrm{(D)}</math>.
+
It follows that <math>0 < \alpha < \frac {\pi}3</math>, and the probability is <math>\frac{\pi/3}{\pi} = \boxed{\textbf{(D) } \frac13 }</math>.
  
==Fake-solve Solution==
+
==Solution 2 (Analytic Geometry)==
  
Notice that if the angle chosen is <math>0</math> radians, then the distance <math>AC</math> is <math>8+5=13</math>. If the angle chosen is <math>2\pi</math> radians, then the distance <math>AC</math> is <math>8-5=3</math>. Now, note that <math>|7-13|=6</math> and <math>|7-3|=4</math>. Finally, since <math>\frac 46 = \frac 23</math>, our answer is <math>1-\frac 23 = \frac 13\Rightarrow \mathrm{(D)}</math>.
+
[[File:2003AMC12BP21.png|center|500px]]
  
Solution by franzliszt
+
<math>WLOG</math>, let the object turn clockwise.
 +
 
 +
Let <math>B = (0, 0)</math>, <math>A = (0, -8)</math>.
 +
 
 +
Note that the possible points of <math>C</math> create a semi-circle of radius <math>5</math> and center <math>B</math>. The area where <math>AC < 7</math> is enclosed by a circle of radius <math>7</math> and center <math>A</math>. The probability that <math>AC < 7</math> is <math>\frac{\angle ABO}{180 ^\circ}</math>.
 +
 
 +
The function of <math>\odot B</math> is <math>x^2 + y^2 = 25</math>, the function of <math>\odot A</math> is <math>x^2 + (y+8)^2 = 49</math>.
 +
 
 +
<math>O</math> is the point that satisfies the system of equations: <math>\begin{cases} x^2 + y^2 = 25 \\ x^2 + (y+8)^2 = 49 \end{cases}</math>
 +
 
 +
<math>x^2 + (y+8)^2 - x^2 - y^2 = 49 - 25</math>, <math>64 + 16y =24</math>, <math>y = - \frac52</math>, <math>x = \frac{5 \sqrt{3}}{2}</math>, <math>O = (\frac{5 \sqrt{3}}{2}, - \frac52)</math>
 +
 
 +
Note that <math>\triangle BDO</math> is a <math>30-60-90</math> triangle, as <math>BO = 5</math>, <math>BD = \frac{5 \sqrt{3}}{2}</math>, <math>DO = \frac52</math>. As a result <math>\angle CBO = 30 ^\circ</math>, <math>\angle ABO = 60 ^\circ</math>.
 +
 
 +
Therefore the probability that <math>AC < 7</math> is <math>\frac{\angle ABO}{180 ^\circ} = \frac{60 ^\circ}{180 ^\circ} = \boxed{\textbf{(D) } \frac13 }</math>
 +
 
 +
~[https://artofproblemsolving.com/wiki/index.php/User:Isabelchen isabelchen]
 +
 
 +
==Solution 3 (Geometric Probability)==
 +
 
 +
Setting <math>A = (0,0)</math> we get that <math>B = (8,0)</math>, after assuming segment AB to be straight in the x-direction relative to our coordinate system (in other words, due to symmetrically we can set <math>x = 8</math> for point B). This gives <math>C = (8 + 5cos(\alpha), 5sin(\alpha))</math>. Using the distance formula we get <math>sqrt((8 + 5cos(\alpha))^2 + (5sin(\alpha))^2) < 7</math>. After algebra, this simplifies to <math>cos(\alpha) < -\frac{1}{2}</math>. After evaluating the constraints of the problem, we land on option (D).
 +
 
 +
~PeterDoesPhysics
  
 
== See also ==
 
== See also ==

Latest revision as of 09:23, 20 September 2024

Problem

An object moves $8$ cm in a straight line from $A$ to $B$, turns at an angle $\alpha$, measured in radians and chosen at random from the interval $(0,\pi)$, and moves $5$ cm in a straight line to $C$. What is the probability that $AC < 7$?

$\mathrm{(A)}\ \frac{1}{6} \qquad\mathrm{(B)}\ \frac{1}{5} \qquad\mathrm{(C)}\ \frac{1}{4} \qquad\mathrm{(D)}\ \frac{1}{3} \qquad\mathrm{(E)}\ \frac{1}{2}$

Solution 1 (Trigonometry)

By the Law of Cosines, \begin{align*} AB^2 + BC^2 - 2 AB \cdot BC \cos \alpha = 89 - 80 \cos \alpha = AC^2 &< 49\\ \cos \alpha &> \frac 12\\ \end{align*}

It follows that $0 < \alpha < \frac {\pi}3$, and the probability is $\frac{\pi/3}{\pi} = \boxed{\textbf{(D) } \frac13 }$.

Solution 2 (Analytic Geometry)

2003AMC12BP21.png

$WLOG$, let the object turn clockwise.

Let $B = (0, 0)$, $A = (0, -8)$.

Note that the possible points of $C$ create a semi-circle of radius $5$ and center $B$. The area where $AC < 7$ is enclosed by a circle of radius $7$ and center $A$. The probability that $AC < 7$ is $\frac{\angle ABO}{180 ^\circ}$.

The function of $\odot B$ is $x^2 + y^2 = 25$, the function of $\odot A$ is $x^2 + (y+8)^2 = 49$.

$O$ is the point that satisfies the system of equations: $\begin{cases} x^2 + y^2 = 25 \\ x^2 + (y+8)^2 = 49 \end{cases}$

$x^2 + (y+8)^2 - x^2 - y^2 = 49 - 25$, $64 + 16y =24$, $y = - \frac52$, $x = \frac{5 \sqrt{3}}{2}$, $O = (\frac{5 \sqrt{3}}{2}, - \frac52)$

Note that $\triangle BDO$ is a $30-60-90$ triangle, as $BO = 5$, $BD = \frac{5 \sqrt{3}}{2}$, $DO = \frac52$. As a result $\angle CBO = 30 ^\circ$, $\angle ABO = 60 ^\circ$.

Therefore the probability that $AC < 7$ is $\frac{\angle ABO}{180 ^\circ} = \frac{60 ^\circ}{180 ^\circ} = \boxed{\textbf{(D) } \frac13 }$

~isabelchen

Solution 3 (Geometric Probability)

Setting $A = (0,0)$ we get that $B = (8,0)$, after assuming segment AB to be straight in the x-direction relative to our coordinate system (in other words, due to symmetrically we can set $x = 8$ for point B). This gives $C = (8 + 5cos(\alpha), 5sin(\alpha))$. Using the distance formula we get $sqrt((8 + 5cos(\alpha))^2 + (5sin(\alpha))^2) < 7$. After algebra, this simplifies to $cos(\alpha) < -\frac{1}{2}$. After evaluating the constraints of the problem, we land on option (D).

~PeterDoesPhysics

See also

2003 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png