Difference between revisions of "2000 AIME I Problems/Problem 14"
Smileapple (talk | contribs) |
|||
(9 intermediate revisions by 4 users not shown) | |||
Line 3: | Line 3: | ||
__TOC__ | __TOC__ | ||
− | == Solution == | + | == Official Solution (MAA)== |
− | === Solution 1 | + | |
+ | <center><asy>defaultpen(fontsize(10)); size(200); pen p=fontsize(8); | ||
+ | pair A,B,C,P,Q; | ||
+ | B=MP("B",origin,down+left); C=MP("C",20*right,right+down); A=MP("A",extension(B,dir(80),C,C+dir(100)),up); Q=MP("Q",20*dir(80),left); P=MP("P",Q+(20*dir(60)),right); | ||
+ | draw(A--B--C--A, black+1);draw(B--P--Q); MP("x",B,20*dir(75),p); MP("x",P,17*dir(245),p); MP("2x",Q,15*dir(70),p); MP("2x",A,15*dir(-90),p); MP("2y",P,2*left,p); MP("3x",P,10*dir(-95),p); MP("x+y",C,5*dir(135),p); MP("y",B,5*dir(40),p); | ||
+ | </asy></center> | ||
+ | Let <math>\angle QPB=x^\circ</math>. Because <math>\angle AQP</math> is exterior to isosceles triangle <math>PQB</math> its measure is <math>2x</math> and <math>\angle PAQ</math> has the same measure. Because <math>\angle BPC</math> is exterior to <math>\triangle BPA</math> its measure is <math>3x</math>. Let <math>\angle PBC = y^\circ</math>. It follows that <math>\angle ACB = x+y</math> and that <math>4x+2y=180^\circ</math>. Two of the angles of triangle <math>APQ</math> have measure <math>2x</math>, and thus the measure of <math>\angle APQ</math> is <math>2y</math>. It follows that <math>AQ=2\cdot AP\cdot \sin y</math>. Because <math>AB=AC</math> and <math>AP=QB</math>, it also follows that <math>AQ=PC</math>. Now apply the Law of Sines to triangle <math>PBC</math> to find <cmath>\frac{\sin 3x}{BC}=\frac{\sin y}{PC}=\frac{\sin y}{2\cdot AP\cdot \sin y}= \frac{1}{2\cdot BC}</cmath>because <math>AP=BC</math>. Hence <math>\sin 3x = \tfrac 12</math>. Since <math>4x<180</math>, this implies that <math>3x=30</math>, i.e. <math>x=10</math>. Thus <math>y=70</math> and <cmath>r=\frac{10+70}{2\cdot 70}=\frac 47,</cmath>which implies that <math>1000r = 571 + \tfrac 37</math>. So the answer is <math>\boxed{571}</math>. | ||
+ | |||
+ | == Solution 1 == | ||
<center><asy>defaultpen(fontsize(8)); size(200); pair A=20*dir(80)+20*dir(60)+20*dir(100), B=(0,0), C=20*dir(0), P=20*dir(80)+20*dir(60), Q=20*dir(80), R=20*dir(60); draw(A--B--C--A);draw(P--Q);draw(A--R--B);draw(P--R);D(R--C,dashed); label(" | <center><asy>defaultpen(fontsize(8)); size(200); pair A=20*dir(80)+20*dir(60)+20*dir(100), B=(0,0), C=20*dir(0), P=20*dir(80)+20*dir(60), Q=20*dir(80), R=20*dir(60); draw(A--B--C--A);draw(P--Q);draw(A--R--B);draw(P--R);D(R--C,dashed); label(" | ||
</asy></center> | </asy></center> | ||
Line 11: | Line 19: | ||
Now <math>\angle ABR = \angle BAC = \angle ACR</math>, and the sum of the angles in <math>\triangle ABC</math> is <math>\angle ABR + 60^{\circ} + \angle BAC + \angle ACR + 60^{\circ} = 3\angle BAC + 120^{\circ} = 180^{\circ} \Longrightarrow \angle BAC = 20^{\circ}</math>. Then <math>\angle APQ = 140^{\circ}</math> and <math>\angle ACB = 80^{\circ}</math>, so the answer is <math>\left\lfloor 1000 \cdot \frac{80}{140} \right\rfloor = \left\lfloor \frac{4000}{7} \right\rfloor = \boxed{571}</math>. | Now <math>\angle ABR = \angle BAC = \angle ACR</math>, and the sum of the angles in <math>\triangle ABC</math> is <math>\angle ABR + 60^{\circ} + \angle BAC + \angle ACR + 60^{\circ} = 3\angle BAC + 120^{\circ} = 180^{\circ} \Longrightarrow \angle BAC = 20^{\circ}</math>. Then <math>\angle APQ = 140^{\circ}</math> and <math>\angle ACB = 80^{\circ}</math>, so the answer is <math>\left\lfloor 1000 \cdot \frac{80}{140} \right\rfloor = \left\lfloor \frac{4000}{7} \right\rfloor = \boxed{571}</math>. | ||
− | === | + | == Solution 2 (Law of sines) == |
+ | |||
+ | Let <math>AP=PQ=QB=BC=x</math> and <math>A</math> be the measure of <math>\angle BAC</math>. Since <math>\triangle APQ</math> and <math>\triangle ABC</math> are isoceles, <math>\angle APQ = 180-2A</math> and <math>\angle ACB = 90-\frac{A}{2}</math>. | ||
+ | Because <math>\triangle APQ</math> and <math>\triangle ABC</math> both have a side length <math>x</math> opposite <math>\angle BAC</math>, by the law of sines: | ||
+ | |||
+ | <math>\frac{x}{\sin A}=\frac{AQ}{\sin(180-2A)}=\frac{AQ+x}{\sin(90-\frac{A}{2})}</math> | ||
+ | |||
+ | Simplifying, this becomes | ||
+ | |||
+ | <math>\frac{x}{\sin A}=\frac{AQ}{\sin 2A}=\frac{AQ+x}{\cos \frac{A}{2}}</math> | ||
+ | |||
+ | From the first two fractions, | ||
+ | |||
+ | <math>AQ\cdot \sin A = x \cdot \sin 2A = x \cdot (2\sin A \cos A) \Longrightarrow AQ=x\cdot 2\cos A</math> | ||
+ | |||
+ | Substituting, we have from the first and third fractions, | ||
+ | |||
+ | <math>\frac{x}{\sin A}=\frac{x\cdot 2\cos A + x}{\cos \frac{A}{2}} \Longrightarrow 2\cos A\sin A + \sin A=\sin 2A + \sin A = \cos \frac{A}{2}</math> | ||
+ | |||
+ | By sum-to-product, | ||
+ | |||
+ | <math>\sin 2A + \sin A = 2\sin \frac{3A}{2} \cos \frac{A}{2}</math> | ||
+ | |||
+ | Thus, | ||
+ | |||
+ | <math>2\sin \frac{3A}{2} \cos \frac{A}{2} = \cos \frac{A}{2} \Longrightarrow \sin \frac{3A}{2} = \frac{1}{2}</math> | ||
+ | |||
+ | Because <math>BC=QB<AB</math>, <math>\angle A</math> is acute, so <math>\frac{3A}{2}=30 \Longrightarrow A=20</math> | ||
+ | |||
+ | <math>\angle ACB = \frac{180-20}{2}=80</math>, <math>\angle APQ = 180-2\cdot 20 = 140 \Longrightarrow r=\frac{4}{7}</math> | ||
+ | |||
+ | <math>1000r=\frac{4000}{7}=\boxed{571}.\overline{428571}</math> | ||
+ | |||
+ | ~bad_at_mathcounts | ||
+ | |||
+ | |||
+ | == Solution 3 == | ||
<center><asy>defaultpen(fontsize(8)); size(200); pair A=20*dir(80)+20*dir(60)+20*dir(100), B=(0,0), C=20*dir(0), P=20*dir(80)+20*dir(60), Q=20*dir(80), R=20*dir(60), S; S=intersectionpoint(Q--C,P--B); draw(A--B--C--A);draw(B--P--Q--C--R--Q);draw(A--R--B);draw(P--R--S); label(" | <center><asy>defaultpen(fontsize(8)); size(200); pair A=20*dir(80)+20*dir(60)+20*dir(100), B=(0,0), C=20*dir(0), P=20*dir(80)+20*dir(60), Q=20*dir(80), R=20*dir(60), S; S=intersectionpoint(Q--C,P--B); draw(A--B--C--A);draw(B--P--Q--C--R--Q);draw(A--R--B);draw(P--R--S); label(" | ||
</asy></center> | </asy></center> | ||
Line 26: | Line 70: | ||
<math>\left\lfloor 1000\left(\frac {4}{7}\right)\right\rfloor = \boxed{571}</math>. | <math>\left\lfloor 1000\left(\frac {4}{7}\right)\right\rfloor = \boxed{571}</math>. | ||
− | + | == Solution 4 (Trig identities)== | |
− | Let | + | Let <math>\angle BAC= 2\theta</math> and <math>AP=PQ=QB=BC=x</math>. <math>\triangle APQ</math> is isosceles, so <math>AQ=2x\cos 2\theta =2x(1-2\sin^2\theta)</math> and <math>AB= AQ+x=x\left(3-4\sin^2\theta\right)</math>. <math>\triangle{ABC}</math> is isosceles too, so <math>x=BC=2AB\sin\theta</math>. Using the expression for <math>AB</math>, we get <cmath>1=2\left(3\sin\theta-4\sin^3\theta\right)=2\sin3\theta</cmath>by the triple angle formula! Thus <math>\theta=10^\circ</math> and <math>\angle A = 2\theta=20^\circ</math>. |
− | + | It follows now that <math>\angle APQ=140^\circ</math>, <math>\angle ACB=80^\circ</math>, giving <math>r=\tfrac{4}{7}</math>, which implies that <math>1000r = 571 + \tfrac 37</math>. So the answer is <math>\boxed{571}</math>. | |
− | + | ||
− | + | ==Solution 5== | |
− | <math>\left\lfloor | + | <asy>defaultpen(fontsize(8)); size(200); pair A=20*dir(80)+20*dir(60)+20*dir(100), B=(0,0), C=20*dir(0), P=20*dir(80)+20*dir(60), Q=20*dir(80), R=20*dir(0)+20*dir(80), D=20*dir(0)+20*dir(80)+20*dir(60)+20*dir(100); draw(R--A--B--C--D--A--C);draw(Q--P--R--Q--C); draw(B--P--D); label("A",A,NW); label("B",B,SW); label("C",C,SE); label("D",D,NE); label("P",P,W); label("Q",Q,W); label("R",R,E);</asy> |
+ | Reflect <math>\triangle ABC</math> over <math>BC</math> and translate it to attach side <math>AB</math> onto <math>AC</math>, mapping <math>\triangle ABC</math> to <math>\triangle CAD</math>. Point <math>P</math> maps to <math>R</math>, and <math>Q</math> maps to <math>P</math>. Then we have that <math>BC=BQ=QP=PA=AD=PR=RC</math>. Notice how <math>BQ=RC</math> and <math>BQ\parallel RC</math>, so <math>BQRC</math> is a parallelogram and <math>QR=BC</math>. But <math>BC=QP=PR</math>, so <math>\triangle QPR</math> is actually equilateral. Set <math>\angle BAC=\angle ACD=x</math>. Then notice that <math>\angle QPC=\angle PQA+\angle PAQ=2x</math>, but <math>\angle RPC=\angle PQA=x</math>. Thus <math>\angle QPR=3x=60</math>, so <math>x=20</math>. Thus <math>\angle QPA=140^{\circ}</math> and <math>\angle BCA=80^{\circ}</math>, so <math>r=\frac{80}{140}=\frac{4}{7}</math>. The answer is <math>\left \lfloor \frac{4000}{7}\right \rfloor =\boxed{571}</math>. | ||
+ | ~ethanzhang1001 | ||
== See also == | == See also == |
Latest revision as of 22:17, 31 December 2024
Problem
In triangle it is given that angles and are congruent. Points and lie on and respectively, so that Angle is times as large as angle where is a positive real number. Find .
Contents
[hide]Official Solution (MAA)
Let . Because is exterior to isosceles triangle its measure is and has the same measure. Because is exterior to its measure is . Let . It follows that and that . Two of the angles of triangle have measure , and thus the measure of is . It follows that . Because and , it also follows that . Now apply the Law of Sines to triangle to find because . Hence . Since , this implies that , i.e. . Thus and which implies that . So the answer is .
Solution 1
Let point be in such that . Then is a rhombus, so and is an isosceles trapezoid. Since bisects , it follows by symmetry in trapezoid that bisects . Thus lies on the perpendicular bisector of , and . Hence is an equilateral triangle.
Now , and the sum of the angles in is . Then and , so the answer is .
Solution 2 (Law of sines)
Let and be the measure of . Since and are isoceles, and . Because and both have a side length opposite , by the law of sines:
Simplifying, this becomes
From the first two fractions,
Substituting, we have from the first and third fractions,
By sum-to-product,
Thus,
Because , is acute, so
,
~bad_at_mathcounts
Solution 3
Again, construct as above.
Let and , which means . is isosceles with , so . Let be the intersection of and . Since , is cyclic, which means . Since is an isosceles trapezoid, , but since bisects , .
Therefore we have that . We solve the simultaneous equations and to get and . , , so . .
Solution 4 (Trig identities)
Let and . is isosceles, so and . is isosceles too, so . Using the expression for , we get by the triple angle formula! Thus and . It follows now that , , giving , which implies that . So the answer is .
Solution 5
Reflect over and translate it to attach side onto , mapping to . Point maps to , and maps to . Then we have that . Notice how and , so is a parallelogram and . But , so is actually equilateral. Set . Then notice that , but . Thus , so . Thus and , so . The answer is .
~ethanzhang1001
See also
2000 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.