|
|
(2 intermediate revisions by 2 users not shown) |
Line 3: |
Line 3: |
| ==Problem 1== | | ==Problem 1== |
| | | |
− | Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks!
| + | Find the number of ordered pairs of positive integers <math>(m,n)</math> such that <math>{m^2n = 20 ^{20}}</math>. |
| | | |
| [[2020 AIME II Problems/Problem 1 | Solution]] | | [[2020 AIME II Problems/Problem 1 | Solution]] |
Line 9: |
Line 9: |
| ==Problem 2== | | ==Problem 2== |
| | | |
− | Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks!
| + | Let <math>P</math> be a point chosen uniformly at random in the interior of the unit square with vertices at <math>(0,0), (1,0), (1,1)</math>, and <math>(0,1)</math>. The probability that the slope of the line determined by <math>P</math> and the point <math>\left(\frac58, \frac38 \right)</math> is greater than or equal to <math>\frac12</math> can be written as <math>\frac{m}{n}</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>. |
| | | |
| [[2020 AIME II Problems/Problem 2 | Solution]] | | [[2020 AIME II Problems/Problem 2 | Solution]] |
Line 15: |
Line 15: |
| ==Problem 3== | | ==Problem 3== |
| | | |
| + | The value of <math>x</math> that satisfies <math>\log_{2^x} 3^{20} = \log_{2^{x+3}} 3^{2020}</math> can be written as <math>\frac{m}{n}</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>. |
| | | |
− | Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks!
| |
| [[2020 AIME II Problems/Problem 3 | Solution]] | | [[2020 AIME II Problems/Problem 3 | Solution]] |
| | | |
| ==Problem 4== | | ==Problem 4== |
− | | + | Triangles <math>\triangle ABC</math> and <math>\triangle A'B'C'</math> lie in the coordinate plane with vertices <math>A(0,0)</math>, <math>B(0,12)</math>, <math>C(16,0)</math>, <math>A'(24,18)</math>, <math>B'(36,18)</math>, <math>C'(24,2)</math>. A rotation of <math>m</math> degrees clockwise around the point <math>(x,y)</math> where <math>0<m<180</math>, will transform <math>\triangle ABC</math> to <math>\triangle A'B'C'</math>. Find <math>m+x+y</math>. |
− | Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks!
| |
| | | |
| [[2020 AIME II Problems/Problem 4 | Solution]] | | [[2020 AIME II Problems/Problem 4 | Solution]] |
Line 27: |
Line 26: |
| ==Problem 5== | | ==Problem 5== |
| | | |
− | Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks!
| + | For each positive integer <math>n</math>, let <math>f(n)</math> be the sum of the digits in the base-four representation of <math>n</math> and let <math>g(n)</math> be the sum of the digits in the base-eight representation of <math>f(n)</math>. For example, <math>f(2020) = f(133210_{\text{4}}) = 10 = 12_{\text{8}}</math>, and <math>g(2020) = \text{the digit sum of }12_{\text{8}} = 3</math>. Let <math>N</math> be the least value of <math>n</math> such that the base-sixteen representation of <math>g(n)</math> cannot be expressed using only the digits <math>0</math> through <math>9</math>. Find the remainder when <math>N</math> is divided by <math>1000</math>. |
| | | |
| [[2020 AIME II Problems/Problem 5 | Solution]] | | [[2020 AIME II Problems/Problem 5 | Solution]] |
Line 33: |
Line 32: |
| ==Problem 6== | | ==Problem 6== |
| | | |
− | | + | Define a sequence recursively by <math>t_1 = 20</math>, <math>t_2 = 21</math>, and<cmath>t_n = \frac{5t_{n-1}+1}{25t_{n-2}}</cmath>for all <math>n \ge 3</math>. Then <math>t_{2020}</math> can be written as <math>\frac{p}{q}</math>, where <math>p</math> and <math>q</math> are relatively prime positive integers. Find <math>p+q</math>. |
− | Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks!
| |
| | | |
| [[2020 AIME II Problems/Problem 6 | Solution]] | | [[2020 AIME II Problems/Problem 6 | Solution]] |
| | | |
| ==Problem 7== | | ==Problem 7== |
− | | + | Two congruent right circular cones each with base radius <math>3</math> and height <math>8</math> have axes of symmetry that intersect at right angles at a point in the interior of the cones a distance <math>3</math> from the base of each cone. A sphere with radius <math>r</math> lies within both cones. The maximum possible value of <math>r^2</math> is <math>\frac{m}{n}</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>. |
− | Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks!
| |
| | | |
| [[2020 AIME II Problems/Problem 7 | Solution]] | | [[2020 AIME II Problems/Problem 7 | Solution]] |
| | | |
| ==Problem 8== | | ==Problem 8== |
− | | + | Define a sequence recursively by <math>f_1(x)=|x-1|</math> and <math>f_n(x)=f_{n-1}(|x-n|)</math> for integers <math>n>1</math>. Find the least value of <math>n</math> such that the sum of the zeros of <math>f_n</math> exceeds <math>500,000</math>. |
− | Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks!
| |
| | | |
| [[2020 AIME II Problems/Problem 8 | Solution]] | | [[2020 AIME II Problems/Problem 8 | Solution]] |
| | | |
| ==Problem 9== | | ==Problem 9== |
− | | + | While watching a show, Ayako, Billy, Carlos, Dahlia, Ehuang, and Frank sat in that order in a row of six chairs. During the break, they went to the kitchen for a snack. When they came back, they sat on those six chairs in such a way that if two of them sat next to each other before the break, then they did not sit next to each other after the break. Find the number of possible seating orders they could have chosen after the break. |
− | Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks!
| |
| | | |
| [[2020 AIME II Problems/Problem 9 | Solution]] | | [[2020 AIME II Problems/Problem 9 | Solution]] |
Line 58: |
Line 53: |
| ==Problem 10== | | ==Problem 10== |
| | | |
| + | Find the sum of all positive integers <math>n</math> such that when <math>1^3+2^3+3^3+\cdots +n^3</math> is divided by <math>n+5</math>, the remainder is <math>17</math>. |
| | | |
− | Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks!
| |
| [[2020 AIME II Problems/Problem 10 | Solution]] | | [[2020 AIME II Problems/Problem 10 | Solution]] |
| | | |
| ==Problem 11== | | ==Problem 11== |
| | | |
| + | Let <math>P(x) = x^2 - 3x - 7</math>, and let <math>Q(x)</math> and <math>R(x)</math> be two quadratic polynomials also with the coefficient of <math>x^2</math> equal to <math>1</math>. David computes each of the three sums <math>P + Q</math>, <math>P + R</math>, and <math>Q + R</math> and is surprised to find that each pair of these sums has a common root, and these three common roots are distinct. If <math>Q(0) = 2</math>, then <math>R(0) = \frac{m}{n}</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m + n</math>. |
| | | |
− | Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks!
| |
| [[2020 AIME II Problems/Problem 11 | Solution]] | | [[2020 AIME II Problems/Problem 11 | Solution]] |
| | | |
| ==Problem 12== | | ==Problem 12== |
| | | |
− | Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks!
| + | Let <math>m</math> and <math>n</math> be odd integers greater than <math>1.</math> An <math>m\times n</math> rectangle is made up of unit squares where the squares in the top row are numbered left to right with the integers <math>1</math> through <math>n</math>, those in the second row are numbered left to right with the integers <math>n + 1</math> through <math>2n</math>, and so on. Square <math>200</math> is in the top row, and square <math>2000</math> is in the bottom row. Find the number of ordered pairs <math>(m,n)</math> of odd integers greater than <math>1</math> with the property that, in the <math>m\times n</math> rectangle, the line through the centers of squares <math>200</math> and <math>2000</math> intersects the interior of square <math>1099</math>. |
| | | |
| [[2020 AIME II Problems/Problem 12 | Solution]] | | [[2020 AIME II Problems/Problem 12 | Solution]] |
Line 76: |
Line 71: |
| ==Problem 13== | | ==Problem 13== |
| | | |
− | | + | Convex pentagon <math>ABCDE</math> has side lengths <math>AB=5</math>, <math>BC=CD=DE=6</math>, and <math>EA=7</math>. Moreover, the pentagon has an inscribed circle (a circle tangent to each side of the pentagon). Find the area of <math>ABCDE</math>. |
− | Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks!
| |
| | | |
| [[2020 AIME II Problems/Problem 13 | Solution]] | | [[2020 AIME II Problems/Problem 13 | Solution]] |
Line 83: |
Line 77: |
| ==Problem 14== | | ==Problem 14== |
| | | |
− | Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks! Scorpio Sucks!
| + | For real number <math>x</math> let <math>\lfloor x\rfloor</math> be the greatest integer less than or equal to <math>x</math>, and define <math>\{x\} = x - \lfloor x \rfloor</math> to be the fractional part of <math>x</math>. For example, <math>\{3\} = 0</math> and <math>\{4.56\} = 0.56</math>. Define <math>f(x)=x\{x\}</math>, and let <math>N</math> be the number of real-valued solutions to the equation <math>f(f(f(x)))=17</math> for <math>0\leq x\leq 2020</math>. Find the remainder when <math>N</math> is divided by <math>1000</math>. |
| | | |
| [[2020 AIME II Problems/Problem 14 | Solution]] | | [[2020 AIME II Problems/Problem 14 | Solution]] |
2020 AIME II (Answer Key) Printable version | AoPS Contest Collections • PDF
|
Instructions
- This is a 15-question, 3-hour examination. All answers are integers ranging from to , inclusive. Your score will be the number of correct answers; i.e., there is neither partial credit nor a penalty for wrong answers.
- No aids other than scratch paper, graph paper, ruler, compass, and protractor are permitted. In particular, calculators and computers are not permitted.
|
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15
|
Problem 1
Find the number of ordered pairs of positive integers such that .
Solution
Problem 2
Let be a point chosen uniformly at random in the interior of the unit square with vertices at , and . The probability that the slope of the line determined by and the point is greater than or equal to can be written as , where and are relatively prime positive integers. Find .
Solution
Problem 3
The value of that satisfies can be written as , where and are relatively prime positive integers. Find .
Solution
Problem 4
Triangles and lie in the coordinate plane with vertices , , , , , . A rotation of degrees clockwise around the point where , will transform to . Find .
Solution
Problem 5
For each positive integer , let be the sum of the digits in the base-four representation of and let be the sum of the digits in the base-eight representation of . For example, , and . Let be the least value of such that the base-sixteen representation of cannot be expressed using only the digits through . Find the remainder when is divided by .
Solution
Problem 6
Define a sequence recursively by , , andfor all . Then can be written as , where and are relatively prime positive integers. Find .
Solution
Problem 7
Two congruent right circular cones each with base radius and height have axes of symmetry that intersect at right angles at a point in the interior of the cones a distance from the base of each cone. A sphere with radius lies within both cones. The maximum possible value of is , where and are relatively prime positive integers. Find .
Solution
Problem 8
Define a sequence recursively by and for integers . Find the least value of such that the sum of the zeros of exceeds .
Solution
Problem 9
While watching a show, Ayako, Billy, Carlos, Dahlia, Ehuang, and Frank sat in that order in a row of six chairs. During the break, they went to the kitchen for a snack. When they came back, they sat on those six chairs in such a way that if two of them sat next to each other before the break, then they did not sit next to each other after the break. Find the number of possible seating orders they could have chosen after the break.
Solution
Problem 10
Find the sum of all positive integers such that when is divided by , the remainder is .
Solution
Problem 11
Let , and let and be two quadratic polynomials also with the coefficient of equal to . David computes each of the three sums , , and and is surprised to find that each pair of these sums has a common root, and these three common roots are distinct. If , then , where and are relatively prime positive integers. Find .
Solution
Problem 12
Let and be odd integers greater than An rectangle is made up of unit squares where the squares in the top row are numbered left to right with the integers through , those in the second row are numbered left to right with the integers through , and so on. Square is in the top row, and square is in the bottom row. Find the number of ordered pairs of odd integers greater than with the property that, in the rectangle, the line through the centers of squares and intersects the interior of square .
Solution
Problem 13
Convex pentagon has side lengths , , and . Moreover, the pentagon has an inscribed circle (a circle tangent to each side of the pentagon). Find the area of .
Solution
Problem 14
For real number let be the greatest integer less than or equal to , and define to be the fractional part of . For example, and . Define , and let be the number of real-valued solutions to the equation for . Find the remainder when is divided by .
Solution
Problem 15
Let be an acute scalene triangle with circumcircle . The tangents to at and intersect at . Let and be the projections of onto lines and , respectively. Suppose , , and . Find .
Solution
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.