Difference between revisions of "1978 AHSME Problems/Problem 20"

(Reformatted question. Source: https://files.eric.ed.gov/fulltext/ED239856.pdf)
(See also)
 
(8 intermediate revisions by one other user not shown)
Line 1: Line 1:
 
== Problem 20 ==
 
== Problem 20 ==
If <math>a,b,c</math> are non-zero real numbers such that <cmath>\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a},</cmath> and <cmath>x=\frac{(a+b)(b+c)(c+a)}{abc},</cmath> and <math>x<0</math>, then <math>x</math> equals
+
If <math>a,b,c</math> are non-zero real numbers such that <cmath>\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a},</cmath> and <cmath>x=\frac{(a+b)(b+c)(c+a)}{abc},</cmath> and <math>x<0,</math> then <math>x</math> equals
  
<math>\textbf{(A) }-1\qquad
+
<math>\textbf{(A) }{-}1\qquad
\textbf{(B) }-2\qquad
+
\textbf{(B) }{-}2\qquad
\textbf{(C) }-4\qquad
+
\textbf{(C) }{-}4\qquad
\textbf{(D) }-6\qquad  
+
\textbf{(D) }{-}6\qquad  
\textbf{(E) }-8    </math>  
+
\textbf{(E) }{-}8    </math>  
  
 
==Solution==
 
==Solution==
 +
From the equation <cmath>\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a},</cmath> we add <math>2</math> to each fraction to get <cmath>\frac{a+b+c}{c}=\frac{a+b+c}{b}=\frac{a+b+c}{a}.</cmath>
 +
We perform casework on <math>a+b+c:</math>
  
Take the first two expressions (you can actually take any two expressions):  <math>\frac{a+b-c}{c}=\frac{a-b+c}{b}</math>.  
+
* If <math>a+b+c\neq0,</math> then <math>a=b=c,</math> from which <math>x=\frac{(2a)(2a)(2a)}{a^3}=8.</math> However, this contradicts the precondition <math>x<0.</math>
  
<math>\frac{a+b}{c}=\frac{a+c}{b}</math>
+
* If <math>a+b+c=0,</math> then <math>x=\frac{(-c)(-a)(-b)}{abc}=\boxed{\textbf{(A) }{-}1}.</math>
  
<math>ab+b^2=ac+c^2</math>
+
~MRENTHUSIASM
 
 
<math>a(b-c)+b^2-c^2=0</math>
 
 
 
<math>(a+b+c)(b-c)=0</math>
 
 
 
<math>\Rightarrow a+b+c=0</math> OR <math>b=c</math>
 
 
 
The first solution gives us <math>x=\frac{(-c)(-a)(-b)}{abc}=-1</math>.
 
 
 
The second solution gives us <math>a=b=c</math>, and <math>x=\frac{8a^3}{a^3}=8</math>, which is not negative, so this solution doesn't work.
 
 
 
Therefore, <math>x=-1\Rightarrow\boxed{A}</math>.
 
  
 
== See also ==
 
== See also ==
  
 
{{AHSME box|year=1978|n=I|num-b=19|num-a=21}}
 
{{AHSME box|year=1978|n=I|num-b=19|num-a=21}}
 +
[[Category:Introductory Algebra Problems]]
 +
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 11:24, 24 March 2024

Problem 20

If $a,b,c$ are non-zero real numbers such that \[\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a},\] and \[x=\frac{(a+b)(b+c)(c+a)}{abc},\] and $x<0,$ then $x$ equals

$\textbf{(A) }{-}1\qquad \textbf{(B) }{-}2\qquad \textbf{(C) }{-}4\qquad \textbf{(D) }{-}6\qquad  \textbf{(E) }{-}8$

Solution

From the equation \[\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a},\] we add $2$ to each fraction to get \[\frac{a+b+c}{c}=\frac{a+b+c}{b}=\frac{a+b+c}{a}.\] We perform casework on $a+b+c:$

  • If $a+b+c\neq0,$ then $a=b=c,$ from which $x=\frac{(2a)(2a)(2a)}{a^3}=8.$ However, this contradicts the precondition $x<0.$
  • If $a+b+c=0,$ then $x=\frac{(-c)(-a)(-b)}{abc}=\boxed{\textbf{(A) }{-}1}.$

~MRENTHUSIASM

See also

1978 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png