Difference between revisions of "2006 Cyprus MO/Lyceum/Problem 13"

(New page: ==Problem== {{empty}} ==Solution== {{solution}} ==See also== {{CYMO box|year=2006|l=Lyceum|num-b=12|num-a=14}})
 
(Standardized answer choices; minor edits)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
 
==Problem==
 
==Problem==
{{empty}}
+
The sum of the digits of the number <math>10^{2006}-2006</math> is
 +
 
 +
<math>\mathrm{(A)}\ 18006\qquad\mathrm{(B)}\ 20060\qquad\mathrm{(C)}\ 2006\qquad\mathrm{(D)}\ 18047\qquad\mathrm{(E)}\ \text{None of these}</math>
  
 
==Solution==
 
==Solution==
{{solution}}
+
<math>10^{2006}</math> is a <math>1</math> followed by 2006 <math>0</math>'s. When we subtract <math>2006</math>, we will get something close to 2006 <math>9</math>'s.
 +
 
 +
The last four digits are <math>10000 - 2006 = 7994</math>, and so we have 2002 <math>9</math>s followed by <math>7994</math>.
 +
 
 +
The sum of these is <math>2002 \cdot 9 + 7 + 9 + 9 + 4 = 18047 \Longrightarrow \mathrm{(D)}</math>
  
 
==See also==
 
==See also==
 
{{CYMO box|year=2006|l=Lyceum|num-b=12|num-a=14}}
 
{{CYMO box|year=2006|l=Lyceum|num-b=12|num-a=14}}
 +
 +
[[Category:Introductory Algebra Problems]]

Latest revision as of 09:33, 27 April 2008

Problem

The sum of the digits of the number $10^{2006}-2006$ is

$\mathrm{(A)}\ 18006\qquad\mathrm{(B)}\ 20060\qquad\mathrm{(C)}\ 2006\qquad\mathrm{(D)}\ 18047\qquad\mathrm{(E)}\ \text{None of these}$

Solution

$10^{2006}$ is a $1$ followed by 2006 $0$'s. When we subtract $2006$, we will get something close to 2006 $9$'s.

The last four digits are $10000 - 2006 = 7994$, and so we have 2002 $9$s followed by $7994$.

The sum of these is $2002 \cdot 9 + 7 + 9 + 9 + 4 = 18047 \Longrightarrow \mathrm{(D)}$

See also

2006 Cyprus MO, Lyceum (Problems)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30