Difference between revisions of "2006 Cyprus MO/Lyceum/Problem 15"

(New page: ==Problem== {{empty}} ==Solution== {{solution}} ==See also== {{CYMO box|year=2006|l=Lyceum|num-b=14|num-a=16}})
 
(Standardized answer choices)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
 
==Problem==
 
==Problem==
{{empty}}
+
The expression <math>\frac{1}{2+\sqrt7} + \frac{1}{\sqrt7+\sqrt{10}}+ \frac{1}{\sqrt{10}+\sqrt{13}} + \frac{1}{\sqrt{13}+4}</math> equals
 +
 
 +
<math>\mathrm{(A)}\ \frac{3}{4}\qquad\mathrm{(B)}\ \frac{3}{2}\qquad\mathrm{(C)}\ \frac{2}{5}\qquad\mathrm{(D)}\ \frac{1}{2}\qquad\mathrm{(E)}\ \frac{2}{3}</math>
  
 
==Solution==
 
==Solution==
{{solution}}
+
Multiply all of the terms by their [[complex conjugate]]s to simplify:
 +
 
 +
<cmath>\frac{1}{\sqrt{7} + \sqrt{4}} \cdot \left(\frac{\sqrt{7}-\sqrt{4}}{\sqrt{7}-\sqrt{4}}\right) + \ldots + \frac{1}{\sqrt{16} + \sqrt{13}} \cdot \left(\frac{\sqrt{16}-\sqrt{13}}{\sqrt{16}-\sqrt{13}}\right)</cmath>
 +
<cmath>= \frac{\sqrt{7} - \sqrt{4}}{3} + \frac{\sqrt{10} - \sqrt{7}}{3} + \frac{\sqrt{13} - \sqrt{10}}{3} + \frac{\sqrt{16} - \sqrt{13}}{3}</cmath>
 +
 
 +
This [[telescope]]s to <math>\frac{\sqrt{16} - \sqrt{4}}{3} = \frac{2}{3} \Longrightarrow \mathrm{(E)}</math>.
  
 
==See also==
 
==See also==
 
{{CYMO box|year=2006|l=Lyceum|num-b=14|num-a=16}}
 
{{CYMO box|year=2006|l=Lyceum|num-b=14|num-a=16}}
 +
 +
[[Category:Introductory Algebra Problems]]

Latest revision as of 09:29, 27 April 2008

Problem

The expression $\frac{1}{2+\sqrt7} + \frac{1}{\sqrt7+\sqrt{10}}+ \frac{1}{\sqrt{10}+\sqrt{13}} + \frac{1}{\sqrt{13}+4}$ equals

$\mathrm{(A)}\ \frac{3}{4}\qquad\mathrm{(B)}\ \frac{3}{2}\qquad\mathrm{(C)}\ \frac{2}{5}\qquad\mathrm{(D)}\ \frac{1}{2}\qquad\mathrm{(E)}\ \frac{2}{3}$

Solution

Multiply all of the terms by their complex conjugates to simplify:

\[\frac{1}{\sqrt{7} + \sqrt{4}} \cdot \left(\frac{\sqrt{7}-\sqrt{4}}{\sqrt{7}-\sqrt{4}}\right) + \ldots + \frac{1}{\sqrt{16} + \sqrt{13}} \cdot \left(\frac{\sqrt{16}-\sqrt{13}}{\sqrt{16}-\sqrt{13}}\right)\] \[= \frac{\sqrt{7} - \sqrt{4}}{3} + \frac{\sqrt{10} - \sqrt{7}}{3} + \frac{\sqrt{13} - \sqrt{10}}{3} + \frac{\sqrt{16} - \sqrt{13}}{3}\]

This telescopes to $\frac{\sqrt{16} - \sqrt{4}}{3} = \frac{2}{3} \Longrightarrow \mathrm{(E)}$.

See also

2006 Cyprus MO, Lyceum (Problems)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30