Difference between revisions of "2006 Cyprus MO/Lyceum/Problem 16"

(New page: ==Problem== {{empty}} ==Solution== {{solution}} ==See also== {{CYMO box|year=2006|l=Lyceum|num-b=15|num-a=17}})
 
m (Style)
 
(3 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 
==Problem==
 
==Problem==
{{empty}}
+
If <math>x_1,x_2</math> are the [[root]]s of the [[equation]] <math>x^2-2kx+2m=0</math>, then <math>\frac{1}{x_1},\frac{1}{x_2}</math> are the roots of the equation
 +
 
 +
<math>\mathrm{(A)}\ x^2-2k^2x+2m^2=0\qquad\mathrm{(B)}\ x^2-\frac{k}{m}x+\frac{1}{2m}=0\qquad\mathrm{(C)}\ x^2-\frac{m}{k}x+\frac{1}{2m}=0\\ \mathrm{(D)}\ 2mx^2-kx+1=0\qquad\mathrm{(E)}\ 2kx^2-2mx+1=0</math>
  
 
==Solution==
 
==Solution==
{{solution}}
+
By [[Vieta’s Formulae|Vieta’s]], <math>x_1 + x_2 = 2k,\ x_1 \cdot x_2 = 2m</math>.
 +
 
 +
The equation with roots <math>x = \frac{1}{x_1}, \frac{1}{x_2}</math> is <math>0 = \left(x - \frac{1}{x_1}\right)\left(x - \frac{1}{x_2}\right)</math> <math> = x^2 - \left(\frac{1}{x_1} + \frac{1}{x_2}\right) + \frac{1}{x_1x_2} = x^2 - \left(\frac{x_1 + x_2}{x_1x_2}\right) + \frac{1}{x_1x_2}</math>. Substituting from above, we get <math>x^2 - \frac{k}{m}x + \frac{1}{2m}= 0 \Longrightarrow \mathrm{(B)}</math>.
  
 
==See also==
 
==See also==
 
{{CYMO box|year=2006|l=Lyceum|num-b=15|num-a=17}}
 
{{CYMO box|year=2006|l=Lyceum|num-b=15|num-a=17}}
 +
 +
[[Category:Introductory Algebra Problems]]

Latest revision as of 09:28, 27 April 2008

Problem

If $x_1,x_2$ are the roots of the equation $x^2-2kx+2m=0$, then $\frac{1}{x_1},\frac{1}{x_2}$ are the roots of the equation

$\mathrm{(A)}\ x^2-2k^2x+2m^2=0\qquad\mathrm{(B)}\ x^2-\frac{k}{m}x+\frac{1}{2m}=0\qquad\mathrm{(C)}\ x^2-\frac{m}{k}x+\frac{1}{2m}=0\\ \mathrm{(D)}\ 2mx^2-kx+1=0\qquad\mathrm{(E)}\ 2kx^2-2mx+1=0$

Solution

By Vieta’s, $x_1 + x_2 = 2k,\ x_1 \cdot x_2 = 2m$.

The equation with roots $x = \frac{1}{x_1}, \frac{1}{x_2}$ is $0 = \left(x - \frac{1}{x_1}\right)\left(x - \frac{1}{x_2}\right)$ $= x^2 - \left(\frac{1}{x_1} + \frac{1}{x_2}\right) + \frac{1}{x_1x_2} = x^2 - \left(\frac{x_1 + x_2}{x_1x_2}\right) + \frac{1}{x_1x_2}$. Substituting from above, we get $x^2 - \frac{k}{m}x + \frac{1}{2m}= 0 \Longrightarrow \mathrm{(B)}$.

See also

2006 Cyprus MO, Lyceum (Problems)
Preceded by
Problem 15
Followed by
Problem 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30