Difference between revisions of "2006 Cyprus MO/Lyceum/Problem 22"

(Problem)
(Standardized answer choices)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
<div style="float:right">
+
[[Image:2006 CyMO-22.PNG|250px|right]]
[[Image:2006 CyMO-22.PNG|250px]]
 
</div>
 
  
<math>AB\Gamma \Delta</math> is rectangular and the points <math>K,\Lambda ,M,N</math> lie on the sides <math>AB, B\Gamma, \Gamma \Delta , \Delta A</math> respectively so that <math>\frac{AK}{KB}=\frac{B\Lambda}{\Lambda \Gamma}=\frac{\Gamma M}{M\Delta}=\frac{\Delta N}{NA}=2</math>. If <math>E_1</math> is the area of <math>K\Lambda MN</math> and <math>E_2</math> is the area of the rectangle <math>AB\Gamma \Delta</math>, the ratio <math>\frac{E_1}{E_2}</math> equals
+
<math>AB\Gamma \Delta</math> is rectangular and the points <math>K,\Lambda ,M,N</math> lie on the sides <math>AB, B\Gamma , \Gamma \Delta, \Delta A</math> respectively so that <math>\frac{AK}{KB}=\frac{BL}{L\Gamma}=\frac{\Gamma M}{M\Delta}=\frac{\Delta N}{NA}=2</math>. If <math>E_1</math> is the area of <math>K\Lambda MN</math> and <math>E_2</math> is the area of the rectangle <math>AB\Gamma \Delta</math>, the ratio <math>\frac{E_1}{E_2}</math> equals
  
A. <math>\frac{5}{9}</math>
+
<math>\mathrm{(A)}\ \frac{5}{9}\qquad\mathrm{(B)}\ \frac{1}{3}\qquad\mathrm{(C)}\ \frac{9}{5}\qquad\mathrm{(D)}\ \frac{3}{5}\qquad\mathrm{(E)}\ \text{None of these}</math>
 
 
B. <math>\frac{1}{3}</math>
 
 
 
C. <math>\frac{9}{5}</math>
 
 
 
D. <math>\frac{3}{5}</math>
 
 
 
E. None of these
 
  
 
==Solution==
 
==Solution==
Let <math>AB = CD = x</math>, <math>BC = AD = y</math>. Using the [[Pythagorean Theorem]], <math>KM = \sqrt{\frac{x^2}{9} + y^2}</math>, <math>LN = \sqrt{x^2 + \frac{y^2}{9}}</math>. Using the formula <math>A = \frac{1}{2}d_1d_2</math> for a [[rhombus]], we get <math>\frac{1}{2}\sqrt{\left(x^2 + \frac{y^2}{9}\right)\left(x^2 + \frac{y^2}{9}\right)} = \frac{1}{2}\sqrt{\frac{x^4}{9} + \frac{y^4}{9} + \frac{82}{81}x^2y^2} = \frac{\sqrt{9x^4 + 9y^4 + 82x^2y^2}}{18}</math>. Thus the ratio is <math>\frac{\sqrt{9x^4 + 9y^4 + 82x^2y^2}}{18xy}</math>. There is no way we can simplify this further, and in fact we can plug in different values of <math>x,y</math> to see that the answer is <math>\mathrm{E}</math>.  
+
Let <math>AB = \Gamma \Delta = x</math>, <math>B\Gamma = A\Delta = y</math>. Using the [[Pythagorean Theorem]], <math>KM = \sqrt{\frac{x^2}{9} + y^2}</math>, <math>\Lambda N = \sqrt{x^2 + \frac{y^2}{9}}</math>. Using the formula <math>A = \frac{1}{2}d_1d_2</math> for a [[rhombus]], we get <math>\frac{1}{2}\sqrt{\left(x^2 + \frac{y^2}{9}\right)\left(x^2 + \frac{y^2}{9}\right)} = \frac{1}{2}\sqrt{\frac{x^4}{9} + \frac{y^4}{9} + \frac{82}{81}x^2y^2} = \frac{\sqrt{9x^4 + 9y^4 + 82x^2y^2}}{18}</math>. Thus the ratio is <math>\frac{\sqrt{9x^4 + 9y^4 + 82x^2y^2}}{18xy}</math>. There is no way we can simplify this further, and in fact we can plug in different values of <math>x,y</math> to see that the answer is <math>\mathrm{E}</math>.  
  
Be careful not to just try a couple of simple examples like <math>ABCD</math> being a square, where we will get the answer <math>5/9</math>, which is incorrect in general.  
+
Be careful not to just try a couple of simple examples like <math>AB\Gamma \Delta</math> being a square, where we will get the answer <math>5/9</math>, which is incorrect in general.
  
 
==See also==
 
==See also==

Latest revision as of 12:19, 26 April 2008

Problem

2006 CyMO-22.PNG

$AB\Gamma \Delta$ is rectangular and the points $K,\Lambda ,M,N$ lie on the sides $AB, B\Gamma , \Gamma \Delta, \Delta A$ respectively so that $\frac{AK}{KB}=\frac{BL}{L\Gamma}=\frac{\Gamma M}{M\Delta}=\frac{\Delta N}{NA}=2$. If $E_1$ is the area of $K\Lambda MN$ and $E_2$ is the area of the rectangle $AB\Gamma \Delta$, the ratio $\frac{E_1}{E_2}$ equals

$\mathrm{(A)}\ \frac{5}{9}\qquad\mathrm{(B)}\ \frac{1}{3}\qquad\mathrm{(C)}\ \frac{9}{5}\qquad\mathrm{(D)}\ \frac{3}{5}\qquad\mathrm{(E)}\ \text{None of these}$

Solution

Let $AB = \Gamma \Delta = x$, $B\Gamma = A\Delta = y$. Using the Pythagorean Theorem, $KM = \sqrt{\frac{x^2}{9} + y^2}$, $\Lambda N = \sqrt{x^2 + \frac{y^2}{9}}$. Using the formula $A = \frac{1}{2}d_1d_2$ for a rhombus, we get $\frac{1}{2}\sqrt{\left(x^2 + \frac{y^2}{9}\right)\left(x^2 + \frac{y^2}{9}\right)} = \frac{1}{2}\sqrt{\frac{x^4}{9} + \frac{y^4}{9} + \frac{82}{81}x^2y^2} = \frac{\sqrt{9x^4 + 9y^4 + 82x^2y^2}}{18}$. Thus the ratio is $\frac{\sqrt{9x^4 + 9y^4 + 82x^2y^2}}{18xy}$. There is no way we can simplify this further, and in fact we can plug in different values of $x,y$ to see that the answer is $\mathrm{E}$.

Be careful not to just try a couple of simple examples like $AB\Gamma \Delta$ being a square, where we will get the answer $5/9$, which is incorrect in general.

See also

2006 Cyprus MO, Lyceum (Problems)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30