Difference between revisions of "2023 AIME I Problems/Problem 8"
(→Solution 2) |
(→Solution 5) |
||
(62 intermediate revisions by 6 users not shown) | |||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | Rhombus <math>ABCD</math> has <math>\angle BAD < 90^\circ.</math> There is a point <math>P</math> on the incircle of the rhombus such that the distances from <math>P</math> to the lines <math>DA, | + | Rhombus <math>ABCD</math> has <math>\angle BAD < 90^\circ.</math> There is a point <math>P</math> on the incircle of the rhombus such that the distances from <math>P</math> to the lines <math>DA,AB,</math> and <math>BC</math> are <math>9,</math> <math>5,</math> and <math>16,</math> respectively. Find the perimeter of <math>ABCD.</math> |
+ | |||
+ | ==Diagram== | ||
+ | <asy> | ||
+ | /* Made by MRENTHUSIASM; inspired by Math Jams. */ | ||
+ | |||
+ | size(300); | ||
+ | pair A, B, C, D, O, P, R, S, T; | ||
+ | A = origin; | ||
+ | B = (125/4,0); | ||
+ | C = B + 125/4 * dir((3,4)); | ||
+ | D = A + 125/4 * dir((3,4)); | ||
+ | O = (25,25/2); | ||
+ | P = (15,5); | ||
+ | R = foot(P,A,D); | ||
+ | S = foot(P,A,B); | ||
+ | T = foot(P,B,C); | ||
+ | |||
+ | markscalefactor=0.15; | ||
+ | draw(rightanglemark(P,R,D)^^rightanglemark(P,S,B)^^rightanglemark(P,T,C),red); | ||
+ | draw(Circle(O,25/2)^^A--B--C--D--cycle^^B--T); | ||
+ | draw(P--R^^P--S^^P--T,red+dashed); | ||
+ | dot("$A$",A,1.5*dir(225),linewidth(4.5)); | ||
+ | dot("$B$",B,1.5*dir(-45),linewidth(4.5)); | ||
+ | dot("$C$",C,1.5*dir(45),linewidth(4.5)); | ||
+ | dot("$D$",D,1.5*dir(135),linewidth(4.5)); | ||
+ | dot("$P$",P,1.5*dir(60),linewidth(4.5)); | ||
+ | dot(R^^S^^T,linewidth(4.5)); | ||
+ | dot(O,linewidth(4.5)); | ||
+ | |||
+ | label("$9$",midpoint(P--R),dir(A-D),red); | ||
+ | label("$5$",midpoint(P--S),dir(180),red); | ||
+ | label("$16$",midpoint(P--T),dir(A-D),red); | ||
+ | </asy> | ||
+ | ~MRENTHUSIASM | ||
==Solution 1== | ==Solution 1== | ||
+ | |||
+ | This solution refers to the <b>Diagram</b> section. | ||
+ | |||
+ | Let <math>O</math> be the incenter of <math>ABCD</math> for which <math>\odot O</math> is tangent to <math>\overline{DA},\overline{AB},</math> and <math>\overline{BC}</math> at <math>X,Y,</math> and <math>Z,</math> respectively. Moreover, suppose that <math>R,S,</math> and <math>T</math> are the feet of the perpendiculars from <math>P</math> to <math>\overleftrightarrow{DA},\overleftrightarrow{AB},</math> and <math>\overleftrightarrow{BC},</math> respectively, such that <math>\overline{RT}</math> intersects <math>\odot O</math> at <math>P</math> and <math>Q.</math> | ||
+ | |||
+ | We obtain the following diagram: | ||
+ | <asy> | ||
+ | /* Made by MRENTHUSIASM; inspired by Math Jams. */ | ||
+ | |||
+ | size(300); | ||
+ | pair A, B, C, D, O, P, R, S, T, X, Y, Z, Q; | ||
+ | A = origin; | ||
+ | B = (125/4,0); | ||
+ | C = B + 125/4 * dir((3,4)); | ||
+ | D = A + 125/4 * dir((3,4)); | ||
+ | O = (25,25/2); | ||
+ | P = (15,5); | ||
+ | R = foot(P,A,D); | ||
+ | S = foot(P,A,B); | ||
+ | T = foot(P,B,C); | ||
+ | X = (15,20); | ||
+ | Y = (25,0); | ||
+ | Z = (35,5); | ||
+ | Q = intersectionpoints(Circle(O,25/2),R--T)[1]; | ||
+ | |||
+ | fill(R--T--Z--X--cycle,cyan); | ||
+ | markscalefactor=0.15; | ||
+ | draw(rightanglemark(P,R,D)^^rightanglemark(P,S,B)^^rightanglemark(P,T,C),red); | ||
+ | draw(Circle(O,25/2)^^A--B--C--D--cycle^^B--T); | ||
+ | draw(P--R^^P--S^^P--T,red+dashed); | ||
+ | draw(O--X^^O--Y^^O--Z); | ||
+ | dot("$A$",A,1.5*dir(225),linewidth(4.5)); | ||
+ | dot("$B$",B,1.5*dir(-45),linewidth(4.5)); | ||
+ | dot("$C$",C,1.5*dir(45),linewidth(4.5)); | ||
+ | dot("$D$",D,1.5*dir(135),linewidth(4.5)); | ||
+ | dot("$P$",P,1.5*dir(60),linewidth(4.5)); | ||
+ | dot("$R$",R,1.5*dir(135),linewidth(4.5)); | ||
+ | dot("$S$",S,1.5*dir(-90),linewidth(4.5)); | ||
+ | dot("$T$",T,1.5*dir(-45),linewidth(4.5)); | ||
+ | dot("$O$",O,1.5*dir(45),linewidth(4.5)); | ||
+ | dot("$X$",X,1.5*dir(135),linewidth(4.5)); | ||
+ | dot("$Y$",Y,1.5*dir(-90),linewidth(4.5)); | ||
+ | dot("$Z$",Z,1.5*dir(-45),linewidth(4.5)); | ||
+ | dot("$Q$",Q,1.5*dir(60),linewidth(4.5)); | ||
+ | |||
+ | label("$9$",midpoint(P--R),dir(A-D),red); | ||
+ | label("$5$",midpoint(P--S),dir(180),red); | ||
+ | label("$16$",midpoint(P--T),dir(A-D),red); | ||
+ | </asy> | ||
+ | Note that <math>\angle RXZ = \angle TZX = 90^\circ</math> by the properties of tangents, so <math>RTZX</math> is a rectangle. It follows that the diameter of <math>\odot O</math> is <math>XZ = RT = 25.</math> | ||
+ | |||
+ | Let <math>x=PQ</math> and <math>y=RX=TZ.</math> | ||
+ | We apply the Power of a Point Theorem to <math>R</math> and <math>T:</math> | ||
+ | <cmath>\begin{align*} | ||
+ | y^2 &= 9(9+x), \\ | ||
+ | y^2 &= 16(16-x). | ||
+ | \end{align*}</cmath> | ||
+ | We solve this system of equations to get <math>x=7</math> and <math>y=12.</math> Alternatively, we can find these results by the symmetry on rectangle <math>RTZX</math> and semicircle <math>\widehat{XPZ}.</math> | ||
+ | |||
+ | We extend <math>\overline{SP}</math> beyond <math>P</math> to intersect <math>\odot O</math> and <math>\overleftrightarrow{CD}</math> at <math>E</math> and <math>F,</math> respectively, where <math>E\neq P.</math> So, we have <math>EF=SP=5</math> and <math>PE=25-SP-EF=15.</math> On the other hand, we have <math>PX=15</math> by the Pythagorean Theorem on right <math>\triangle PRX.</math> Together, we conclude that <math>E=X.</math> Therefore, points <math>S,P,</math> and <math>X</math> must be collinear. | ||
+ | |||
+ | Let <math>G</math> be the foot of the perpendicular from <math>D</math> to <math>\overline{AB}.</math> Note that <math>\overline{DG}\parallel\overline{XP},</math> as shown below: | ||
+ | <asy> | ||
+ | /* Made by MRENTHUSIASM; inspired by Math Jams. */ | ||
+ | |||
+ | size(300); | ||
+ | pair A, B, C, D, O, P, R, S, T, X, Y, Z, Q, G; | ||
+ | A = origin; | ||
+ | B = (125/4,0); | ||
+ | C = B + 125/4 * dir((3,4)); | ||
+ | D = A + 125/4 * dir((3,4)); | ||
+ | O = (25,25/2); | ||
+ | P = (15,5); | ||
+ | R = foot(P,A,D); | ||
+ | S = foot(P,A,B); | ||
+ | T = foot(P,B,C); | ||
+ | X = (15,20); | ||
+ | Y = (25,0); | ||
+ | Z = (35,5); | ||
+ | Q = intersectionpoints(Circle(O,25/2),R--T)[1]; | ||
+ | G = foot(D,A,B); | ||
+ | |||
+ | fill(D--A--G--cycle,green); | ||
+ | fill(P--R--X--cycle,yellow); | ||
+ | markscalefactor=0.15; | ||
+ | draw(rightanglemark(P,R,D)^^rightanglemark(D,G,A),red); | ||
+ | draw(Circle(O,25/2)^^A--B--C--D--cycle^^X--P^^D--G); | ||
+ | draw(P--R,red+dashed); | ||
+ | dot("$A$",A,1.5*dir(225),linewidth(4.5)); | ||
+ | dot("$B$",B,1.5*dir(-45),linewidth(4.5)); | ||
+ | dot("$C$",C,1.5*dir(45),linewidth(4.5)); | ||
+ | dot("$D$",D,1.5*dir(135),linewidth(4.5)); | ||
+ | dot("$P$",P,1.5*dir(60),linewidth(4.5)); | ||
+ | dot("$R$",R,1.5*dir(135),linewidth(4.5)); | ||
+ | dot("$O$",O,1.5*dir(45),linewidth(4.5)); | ||
+ | dot("$X$",X,1.5*dir(135),linewidth(4.5)); | ||
+ | dot("$G$",G,1.5*dir(-90),linewidth(4.5)); | ||
+ | draw(P--X,MidArrow(0.3cm,Fill(red))); | ||
+ | draw(G--D,MidArrow(0.3cm,Fill(red))); | ||
+ | |||
+ | label("$9$",midpoint(P--R),dir(A-D),red); | ||
+ | label("$12$",midpoint(R--X),dir(135),red); | ||
+ | label("$15$",midpoint(X--P),dir(0),red); | ||
+ | label("$25$",midpoint(G--D),dir(0),red); | ||
+ | </asy> | ||
+ | As <math>\angle PRX = \angle AGD = 90^\circ</math> and <math>\angle PXR = \angle ADG</math> by the AA Similarity, we conclude that <math>\triangle PRX \sim \triangle AGD.</math> The ratio of similitude is <cmath>\frac{PX}{AD} = \frac{RX}{GD}.</cmath> We get <math>\frac{15}{AD} = \frac{12}{25},</math> from which <math>AD = \frac{125}{4}.</math> | ||
+ | |||
+ | Finally, the perimeter of <math>ABCD</math> is <math>4AD = \boxed{125}.</math> | ||
+ | |||
+ | ~MRENTHUSIASM (inspired by awesomeming327. and WestSuburb) | ||
+ | |||
+ | ==Solution 2== | ||
+ | |||
+ | This solution refers to the <b>Diagram</b> section. | ||
+ | |||
+ | Define points <math>O,R,S,</math> and <math>T</math> as Solution 1 does. Moreover, let | ||
+ | <math>H</math> be the foot of the perpendicular from <math>P</math> to <math>\overleftrightarrow{CD},</math> | ||
+ | <math>M</math> be the foot of the perpendicular from <math>O</math> to <math>\overleftrightarrow{HS},</math> and | ||
+ | <math>N</math> be the foot of the perpendicular from <math>O</math> to <math>\overleftrightarrow{RT}.</math> | ||
+ | |||
+ | We obtain the following diagram: | ||
+ | <asy> | ||
+ | /* Made by MRENTHUSIASM; inspired by Math Jams. */ | ||
+ | |||
+ | size(300); | ||
+ | pair A, B, C, D, O, P, R, S, T, H, M, N; | ||
+ | A = origin; | ||
+ | B = (125/4,0); | ||
+ | C = B + 125/4 * dir((3,4)); | ||
+ | D = A + 125/4 * dir((3,4)); | ||
+ | O = (25,25/2); | ||
+ | P = (15,5); | ||
+ | R = foot(P,A,D); | ||
+ | S = foot(P,A,B); | ||
+ | T = foot(P,B,C); | ||
+ | H = foot(S,C,D); | ||
+ | M = foot(O,S,H); | ||
+ | N = foot(O,R,T); | ||
+ | |||
+ | fill(O--M--P--cycle,yellow); | ||
+ | fill(O--N--P--cycle,green); | ||
+ | markscalefactor=0.15; | ||
+ | draw(rightanglemark(P,R,D)^^rightanglemark(P,S,B)^^rightanglemark(P,T,C)^^rightanglemark(O,M,P)^^rightanglemark(O,N,P)^^rightanglemark(S,H,D),red); | ||
+ | draw(Circle(O,25/2)^^A--B--C--D--cycle^^B--T^^D--H^^O--M^^O--N^^O--P); | ||
+ | draw(P--R^^P--S^^P--T^^P--H,red+dashed); | ||
+ | dot("$A$",A,1.5*dir(225),linewidth(4.5)); | ||
+ | dot("$B$",B,1.5*dir(-45),linewidth(4.5)); | ||
+ | dot("$C$",C,1.5*dir(45),linewidth(4.5)); | ||
+ | dot("$D$",D,1.5*dir(90),linewidth(4.5)); | ||
+ | dot("$P$",P,1.5*dir(60),linewidth(4.5)); | ||
+ | dot("$R$",R,1.5*dir(135),linewidth(4.5)); | ||
+ | dot("$S$",S,1.5*dir(-90),linewidth(4.5)); | ||
+ | dot("$T$",T,1.5*dir(-45),linewidth(4.5)); | ||
+ | dot("$O$",O,1.5*dir(45),linewidth(4.5)); | ||
+ | dot("$H$",H,1.5*dir(90),linewidth(4.5)); | ||
+ | dot("$M$",M,1.5*dir(180),linewidth(4.5)); | ||
+ | dot("$N$",N,1.5*dir(15),linewidth(4.5)); | ||
+ | |||
+ | label("$9$",midpoint(P--R),dir(A-D),red); | ||
+ | label("$5$",midpoint(P--S),dir(180),red); | ||
+ | label("$16$",midpoint(P--T),dir(A-D),red); | ||
+ | </asy> | ||
+ | Note that the diameter of <math>\odot O</math> is <math>HS=RT=25,</math> so <math>OP=\frac{25}{2}.</math> It follows that: | ||
+ | <ol style="margin-left: 1.5em;"> | ||
+ | <li>In right <math>\triangle OMP,</math> we have <math>MP=\frac{HS}{2}-PS=\frac{15}{2}</math> by symmetry, from which <math>OM=10</math> by the Pythagorean Theorem.</li><p> | ||
+ | <li>In right <math>\triangle ONP,</math> we have <math>NP=\frac{RT}{2}-RP=\frac{7}{2}</math> by symmetry, from which <math>ON=12</math> by the Pythagorean Theorem.</li><p> | ||
+ | </ol> | ||
+ | Since <math>\overline{MO}\parallel\overline{AB}</math> and <math>\overline{ON}\parallel\overline{DA},</math> we conclude that <math>\angle A = \angle MON.</math> We apply the Sine of a Sum Formula: | ||
+ | <cmath>\begin{align*} | ||
+ | \sin\angle A &= \sin\angle MON \\ | ||
+ | &= \sin(\angle MOP + \angle PON) \\ | ||
+ | &= \sin\angle MOP \cos\angle PON + \cos\angle MOP \sin\angle PON \\ | ||
+ | &= \frac{3}{5}\cdot\frac{24}{25} + \frac{4}{5}\cdot\frac{7}{25} \\ | ||
+ | &= \frac{4}{5}. | ||
+ | \end{align*}</cmath> | ||
+ | Note that <cmath>\sin\angle A = \frac{HS}{DA},</cmath> from which <math>\frac{4}{5} = \frac{25}{DA}.</math> We solve this equation to get <math>DA=\frac{125}{4}.</math> | ||
+ | |||
+ | Finally, the perimeter of <math>ABCD</math> is <math>4DA = \boxed{125}.</math> | ||
+ | |||
+ | ~MRENTHUSIASM (credit given to TheAMCHub) | ||
+ | |||
+ | ==Solution 3== | ||
+ | |||
+ | Label the points of the rhombus to be <math>X</math>, <math>Y</math>, <math>Z</math>, and <math>W</math> and the center of the incircle to be <math>O</math> so that <math>9</math>, <math>5</math>, and <math>16</math> are the distances from point <math>P</math> to side <math>ZW</math>, side <math>WX</math>, and <math>XY</math> respectively. Through this, we know that the distance from the two pairs of opposite lines of rhombus <math>XYZW</math> is <math>25</math> and circle <math>O</math> has radius <math>\frac{25}{2}</math>. | ||
+ | |||
+ | Call the feet of the altitudes from <math>P</math> to side <math>ZW</math>, side <math>WX</math>, and side <math>XY</math> to be <math>A</math>, <math>B</math>, and <math>C</math> respectively. Additionally, call the feet of the altitudes from <math>O</math> to side <math>ZW</math>, side <math>WX</math>, and side <math>XY</math> to be <math>D</math>, <math>E</math>, and <math>F</math> respectively. | ||
+ | |||
+ | Draw a line segment from <math>P</math> to <math>\overline{OD}</math> so that it is perpendicular to <math>\overline{OD}</math>. Notice that this segment length is equal to <math>AD</math> and is <math>\sqrt{\left(\frac{25}{2}\right)^2-\left(\frac{7}{2}\right)^2}=12</math> by Pythagorean Theorem. | ||
+ | |||
+ | Similarly, perform the same operations with perpendicular from <math>P</math> to <math>\overline{OE}</math> to get <math>BE=10</math>. | ||
+ | |||
+ | By equal tangents, <math>WD=WE</math>. Now, label the length of segment <math>WA=n</math> and <math>WB=n+2</math>. | ||
+ | |||
+ | Using Pythagorean Theorem again, we get | ||
+ | |||
+ | <cmath> | ||
+ | \begin{align*} | ||
+ | WA^2+PA^2&=WB^2+PB^2 | ||
+ | \\ | ||
+ | n^2+9^2&=(n+2)^2+5^2 | ||
+ | \\ | ||
+ | n&=13. | ||
+ | \end{align*} | ||
+ | </cmath> | ||
+ | |||
+ | Which also gives us <math>\tan{\angle{OWX}}=\frac{1}{2}</math> and <math>OW=\frac{25\sqrt{5}}{2}</math>. | ||
+ | |||
+ | Since the diagonals of the rhombus intersect at <math>O</math> and are angle bisectors and are also perpendicular to each other, we can get that | ||
+ | |||
+ | <cmath> | ||
+ | \begin{align*} | ||
+ | \frac{OX}{OW}&=\tan{\angle{OWX}} \\ | ||
+ | OX&=\frac{25\sqrt{5}}{4} \\ | ||
+ | WX^2&=OW^2+OX^2 \\ | ||
+ | WX&=\frac{125}{4} \\ | ||
+ | 4WX&=\boxed{125}. | ||
+ | \end{align*} | ||
+ | </cmath> | ||
+ | |||
+ | ~[[Daniel Zhou's Profile|Danielzh]] | ||
+ | |||
+ | ==Solution 4== | ||
Denote by <math>O</math> the center of <math>ABCD</math>. | Denote by <math>O</math> the center of <math>ABCD</math>. | ||
Line 10: | Line 266: | ||
We denote the side length of <math>ABCD</math> as <math>d</math>. | We denote the side length of <math>ABCD</math> as <math>d</math>. | ||
− | Because the distances from <math>P</math> to <math>BC</math> and <math>AD</math> are 16 and 9, respectively, and <math>BC \parallel AD</math>, the distance between each pair of two parallel sides of <math>ABCD</math> is <math>16 + 9 = 25</math>. | + | Because the distances from <math>P</math> to <math>BC</math> and <math>AD</math> are <math>16</math> and <math>9</math>, respectively, and <math>BC \parallel AD</math>, the distance between each pair of two parallel sides of <math>ABCD</math> is <math>16 + 9 = 25</math>. |
Thus, <math>OH = \frac{25}{2}</math> and <math>d \sin \theta = 25</math>. | Thus, <math>OH = \frac{25}{2}</math> and <math>d \sin \theta = 25</math>. | ||
Line 49: | Line 305: | ||
+ \left( d - \frac{25}{2} \tan \frac{\theta}{2} - \frac{9 + 5 \cos \theta}{\sin \theta} \right) \\ | + \left( d - \frac{25}{2} \tan \frac{\theta}{2} - \frac{9 + 5 \cos \theta}{\sin \theta} \right) \\ | ||
& = \left( \frac{15}{2} \right)^2 | & = \left( \frac{15}{2} \right)^2 | ||
− | + \left( \frac{25}{\sin \theta} - \frac{25}{2} \tan \frac{\theta}{2} - \frac{9 + 5 \cos \theta}{\sin \theta} \right) . \hspace{1cm} ( | + | + \left( \frac{25}{\sin \theta} - \frac{25}{2} \tan \frac{\theta}{2} - \frac{9 + 5 \cos \theta}{\sin \theta} \right) . \hspace{1cm} (\bigstar) |
\end{align*} | \end{align*} | ||
</cmath> | </cmath> | ||
− | Because <math>P</math> is on the incircle of <math>ABCD</math>, <math>OP = \frac{25}{2}</math>. Plugging this into ( | + | Because <math>P</math> is on the incircle of <math>ABCD</math>, <math>OP = \frac{25}{2}</math>. Plugging this into <math>(\bigstar)</math>, we get the following equation |
<cmath> | <cmath> | ||
\[ | \[ | ||
Line 63: | Line 319: | ||
Therefore, <math>d = \frac{25}{\sin \theta} = \frac{125}{4}</math>. | Therefore, <math>d = \frac{25}{\sin \theta} = \frac{125}{4}</math>. | ||
− | Therefore, the perimeter of <math>ABCD</math> is <math>4d = \boxed{ | + | Therefore, the perimeter of <math>ABCD</math> is <math>4d = \boxed{125}</math>. |
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com) | ~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com) | ||
− | ==Solution | + | ==Solution 5== |
− | |||
− | + | The center of the incircle is <math>O.</math> Denote the points in which the incircle meets <math>\overline{AB},</math> <math>\overline{BC},</math> <math>\overline{CD},</math> and <math>\overline{DA}</math> as <math>W,</math> <math>X,</math> <math>Y,</math> and <math>Z,</math> respectively. Next, also denote the base of the perpendicular from <math>P</math> to <math>\overline{AB},</math> <math>\overline{AD},</math> <math>\overline{OW},</math> and <math>\overline{OZ}</math> as <math>M,</math> <math>N,</math> <math>S,</math> and <math>T,</math> respectively. | |
− | + | We can easily see that the radius of the circle is <math>\frac{25}{2}.</math> Using this and Pythagorus on right <math>\triangle OSP</math> and <math>\triangle OTP,</math> we find that <math>MW = PS = 10</math> and <math>NZ = PT = 12.</math> | |
− | + | Since <math>AW = AZ</math> by properties of circle tangents, we can deduce by the above information that <math>AM = AN+2.</math> Doing Pythagorus on right <math>\triangle AMP</math> and <math>\triangle ANP</math> we find that <math>a^2 = b^2 + 56</math> (because <math>a^2+25=b^2+81.</math>) From solving the <math>2</math> just derived equations, we find that <math>AM=15</math> and <math>AN=13.</math> | |
− | + | Next, we use Pythagorus on right <math>\triangle AOB</math> (we can see it's right because of properties of rhombuses.) We get <cmath>AB^2 = AO^2 + BO^2.</cmath> We know <math>AB = AW + WB = 25 + WB.</math> By Pythagorus on <math>\triangle AWO</math> and <math>\triangle BWO,</math> we also know <math>AO^2 = 25^2+\left(\frac{25}{2}\right)^2</math> and <math>BO^2=WB^2+\left(\frac{25}{2}\right)^2.</math> Substituting these in, we have <cmath>25^2 + 50WB + WB^2 = 25^2+\left(\frac{25}{2}\right)^2+\left(\frac{25}{2}\right)^2+WB^2.</cmath> Solving for <math>WB,</math> we get <math>WB = \frac{25}{4}.</math> Now we find that each side of the rhombus <math>=AB=25+\frac{25}{4}=\frac{125}{4}.</math> The perimeter of the rhombus would be that times <math>4.</math> Our final answer is <cmath>\frac{125}{4}\cdot4=\boxed{125}.</cmath> | |
− | + | ~s214425 | |
− | + | ==Solution 6 == | |
− | <cmath> | + | [[File:2023 AIME I 8.png|450px|right]] |
− | \ | + | Notation is shown on diagram, <math>RT \perp AD, FG \perp AB, E = AD \cap \omega, E' = FG \cap AD.</math> |
− | + | <math>RT = 9 + 16 = 25 = FG</math> as hights of rhombus. | |
− | \\ | + | <cmath>RP = QT = 9, PQ = 16 - 9 = 7, GE' = PF = 5,</cmath> |
− | + | <cmath>PE' = 25 - 5 - 5 = 15, RE = \sqrt{RP \cdot RQ} = \sqrt{9 \cdot 16} = 12.</cmath> | |
− | \\ | + | <cmath>PE = \sqrt{RP^2 + RE^2} = 15 \implies E = E'.</cmath> |
− | + | <cmath>\sin \alpha = \frac {RE}{PE} = \frac {GF}{AD} \implies AD = \frac {15 \cdot 25}{12} = \frac {125}{4}.</cmath> | |
− | \ | + | The perimeter of <math>ABCD </math> is <math>\frac{125}{4}\cdot4=\boxed{125}.</math> |
− | </ | ||
− | + | '''vladimir.shelomovskii@gmail.com, vvsss''' | |
− | + | ==Video Solution== | |
+ | https://youtu.be/AYH6zdJqZLM | ||
− | + | ~MathProblemSolvingSkills.com | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==See also== | ==See also== |
Latest revision as of 13:54, 3 July 2023
Contents
Problem
Rhombus has There is a point on the incircle of the rhombus such that the distances from to the lines and are and respectively. Find the perimeter of
Diagram
~MRENTHUSIASM
Solution 1
This solution refers to the Diagram section.
Let be the incenter of for which is tangent to and at and respectively. Moreover, suppose that and are the feet of the perpendiculars from to and respectively, such that intersects at and
We obtain the following diagram: Note that by the properties of tangents, so is a rectangle. It follows that the diameter of is
Let and We apply the Power of a Point Theorem to and We solve this system of equations to get and Alternatively, we can find these results by the symmetry on rectangle and semicircle
We extend beyond to intersect and at and respectively, where So, we have and On the other hand, we have by the Pythagorean Theorem on right Together, we conclude that Therefore, points and must be collinear.
Let be the foot of the perpendicular from to Note that as shown below: As and by the AA Similarity, we conclude that The ratio of similitude is We get from which
Finally, the perimeter of is
~MRENTHUSIASM (inspired by awesomeming327. and WestSuburb)
Solution 2
This solution refers to the Diagram section.
Define points and as Solution 1 does. Moreover, let be the foot of the perpendicular from to be the foot of the perpendicular from to and be the foot of the perpendicular from to
We obtain the following diagram: Note that the diameter of is so It follows that:
- In right we have by symmetry, from which by the Pythagorean Theorem.
- In right we have by symmetry, from which by the Pythagorean Theorem.
Since and we conclude that We apply the Sine of a Sum Formula: Note that from which We solve this equation to get
Finally, the perimeter of is
~MRENTHUSIASM (credit given to TheAMCHub)
Solution 3
Label the points of the rhombus to be , , , and and the center of the incircle to be so that , , and are the distances from point to side , side , and respectively. Through this, we know that the distance from the two pairs of opposite lines of rhombus is and circle has radius .
Call the feet of the altitudes from to side , side , and side to be , , and respectively. Additionally, call the feet of the altitudes from to side , side , and side to be , , and respectively.
Draw a line segment from to so that it is perpendicular to . Notice that this segment length is equal to and is by Pythagorean Theorem.
Similarly, perform the same operations with perpendicular from to to get .
By equal tangents, . Now, label the length of segment and .
Using Pythagorean Theorem again, we get
Which also gives us and .
Since the diagonals of the rhombus intersect at and are angle bisectors and are also perpendicular to each other, we can get that
Solution 4
Denote by the center of . We drop an altitude from to that meets at point . We drop altitudes from to and that meet and at and , respectively. We denote . We denote the side length of as .
Because the distances from to and are and , respectively, and , the distance between each pair of two parallel sides of is . Thus, and .
We have
Thus, .
In , we have . Thus,
Taking the imaginary part of this equation and plugging and into this equation, we get
We have
Because is on the incircle of , . Plugging this into , we get the following equation
By solving this equation, we get and . Therefore, .
Therefore, the perimeter of is .
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
Solution 5
The center of the incircle is Denote the points in which the incircle meets and as and respectively. Next, also denote the base of the perpendicular from to and as and respectively.
We can easily see that the radius of the circle is Using this and Pythagorus on right and we find that and
Since by properties of circle tangents, we can deduce by the above information that Doing Pythagorus on right and we find that (because ) From solving the just derived equations, we find that and
Next, we use Pythagorus on right (we can see it's right because of properties of rhombuses.) We get We know By Pythagorus on and we also know and Substituting these in, we have Solving for we get Now we find that each side of the rhombus The perimeter of the rhombus would be that times Our final answer is
~s214425
Solution 6
Notation is shown on diagram, as hights of rhombus. The perimeter of is
vladimir.shelomovskii@gmail.com, vvsss
Video Solution
~MathProblemSolvingSkills.com
See also
2023 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 7 |
Followed by Problem 9 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.