Difference between revisions of "1968 AHSME Problems/Problem 9"

m (See also)
m (removed unnecessary case)
 
(One intermediate revision by the same user not shown)
Line 10: Line 10:
  
 
== Solution ==
 
== Solution ==
<math>\fbox{E}</math>
+
There are three cases: <math>\newline</math>
 +
(i) <math>(x+2), (x-2) \geq 0</math> <math>\newline</math>
 +
(ii) <math>x+2 \geq 0, x-2<0</math> <math>\newline</math>
 +
(iii) <math>(x+2), (x-2)<0</math> <math>\newline</math>
 +
In case (i), we solve the equation <math>x+2=2(x-2)</math> to get <math>x=6</math>. In case (ii), we solve the equation <math>x+2=2(2-x)</math> to get <math>x=\frac{2}{3}</math>. Case (iii) simply produces an equation which is that of case (i) multiplied on both sides by <math>-1</math>, so it yields the same solutions and thus may be discarded. Thus, if we add the real values of <math>x</math> which satisfy the original equation, we get <math>6+\frac{2}{3}=6\frac{2}{3}</math>, or answer choice <math>\fbox{E}</math>.
  
 
== See also ==
 
== See also ==

Latest revision as of 18:39, 17 July 2024

Problem

The sum of the real values of $x$ satisfying the equality $|x+2|=2|x-2|$ is:

$\text{(A) } \frac{1}{3}\quad \text{(B) } \frac{2}{3}\quad \text{(C) } 6\quad \text{(D) } 6\tfrac{1}{3}\quad \text{(E) } 6\tfrac{2}{3}$

Solution

There are three cases: $\newline$ (i) $(x+2), (x-2) \geq 0$ $\newline$ (ii) $x+2 \geq 0, x-2<0$ $\newline$ (iii) $(x+2), (x-2)<0$ $\newline$ In case (i), we solve the equation $x+2=2(x-2)$ to get $x=6$. In case (ii), we solve the equation $x+2=2(2-x)$ to get $x=\frac{2}{3}$. Case (iii) simply produces an equation which is that of case (i) multiplied on both sides by $-1$, so it yields the same solutions and thus may be discarded. Thus, if we add the real values of $x$ which satisfy the original equation, we get $6+\frac{2}{3}=6\frac{2}{3}$, or answer choice $\fbox{E}$.

See also

1968 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png