Difference between revisions of "1968 AHSME Problems/Problem 23"

m (See also)
(solution pasted from old solution 2 (solution 1 was empty))
 
(3 intermediate revisions by the same user not shown)
Line 2: Line 2:
  
 
If all the logarithms are real numbers, the equality
 
If all the logarithms are real numbers, the equality
<math>log(x+3)+log(x-1)=log(x^2-2x-3)</math>
+
<math>\log(x+3)+\log(x-1)=\log(x^2-2x-3)</math>
 
is satisfied for:
 
is satisfied for:
  
Line 10: Line 10:
 
\text{(D) no real values of } x \text{ except } x=0\quad\\
 
\text{(D) no real values of } x \text{ except } x=0\quad\\
 
\text{(E) all real values of } x \text{ except } x=1</math>
 
\text{(E) all real values of } x \text{ except } x=1</math>
 
  
 
== Solution ==
 
== Solution ==
<math>\fbox{B}</math>
 
 
== Solution 2 ==
 
 
 
From the given we have
 
From the given we have
 
<cmath>\log(x+3)+\log(x-1)=\log(x^2-2x-3)</cmath>
 
<cmath>\log(x+3)+\log(x-1)=\log(x^2-2x-3)</cmath>
Line 22: Line 17:
 
<cmath>x^2+2x-3=x^2-2x-3</cmath>
 
<cmath>x^2+2x-3=x^2-2x-3</cmath>
 
<cmath>x=0</cmath>
 
<cmath>x=0</cmath>
However substituing into <math>\log(x-1)</math> gets a negative argument, which is impossible <math>\boxed{D}</math>.
+
However substituing into <math>\log(x-1)</math> gets a negative argument, which is impossible <math>\boxed{B}</math>.
  
 
~ Nafer
 
~ Nafer

Latest revision as of 20:21, 17 July 2024

Problem

If all the logarithms are real numbers, the equality $\log(x+3)+\log(x-1)=\log(x^2-2x-3)$ is satisfied for:

$\text{(A) all real values of }x \quad\\ \text{(B) no real values of } x\quad\\ \text{(C) all real values of } x \text{ except } x=0\quad\\ \text{(D) no real values of } x \text{ except } x=0\quad\\ \text{(E) all real values of } x \text{ except } x=1$

Solution

From the given we have \[\log(x+3)+\log(x-1)=\log(x^2-2x-3)\] \[\log(x^2+2x-3)=\log(x^2-2x-3)\] \[x^2+2x-3=x^2-2x-3\] \[x=0\] However substituing into $\log(x-1)$ gets a negative argument, which is impossible $\boxed{B}$.

~ Nafer

See also

1968 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png