Difference between revisions of "2016 AMC 10A Problems/Problem 19"
m (→Solution 2 (Mass points and Similar Triangles - Easy)) |
m (→Solution 5 (Mass Points)) |
||
(3 intermediate revisions by 2 users not shown) | |||
Line 60: | Line 60: | ||
Now, we wish to get <math>DQ:QP:PB</math>. Observe that <math>BQ=QP+PB</math>. So, <math>DQ:BQ=DQ:QP+PB=3:2</math> so (since <math>QP:PB=3:5</math> has sum <math>3+5=8</math>), <math>DQ:QP+PB=3:2=12:8</math>. now, we may combine the two and get <math>DQ:QP:PB=12:3:5</math> so <math>r+s+t=12+3+5=\boxed{\textbf{(E) }20}</math>. | Now, we wish to get <math>DQ:QP:PB</math>. Observe that <math>BQ=QP+PB</math>. So, <math>DQ:BQ=DQ:QP+PB=3:2</math> so (since <math>QP:PB=3:5</math> has sum <math>3+5=8</math>), <math>DQ:QP+PB=3:2=12:8</math>. now, we may combine the two and get <math>DQ:QP:PB=12:3:5</math> so <math>r+s+t=12+3+5=\boxed{\textbf{(E) }20}</math>. | ||
− | ~Firebolt360 | + | ~Firebolt360(minor edits by vadava_lx) |
==Solution 3(Coordinate Bash)== | ==Solution 3(Coordinate Bash)== | ||
− | We can set coordinates for the points. <math>D=(0,0), C=(6,0), B=(6,3),</math> and <math>A=(0,3)</math>. The line <math>BD</math>'s equation is <math>y = \frac{1}{2}x</math>, line <math>AE</math>'s equation is <math>y = -\frac{1}{6}x + 3</math>, and line <math>AF</math>'s equation is <math>y = -\frac{1}{3}x + 3</math>. Adding the equations of lines <math>BD</math> and <math>AE</math>, we find that the coordinates of <math>P</math> are <math>\left(\frac{9}{2},\frac{9}{4}\right)</math>. Furthermore we find that the coordinates of <math>Q</math> are <math>\left(\frac{18}{5}, \frac{9}{5}\right)</math>. Using the [[Pythagorean Theorem]], we get that the length of <math>QD</math> is <math>\sqrt{\left(\frac{18}{5}\right)^2+\left(\frac{9}{5}\right)^2} = \sqrt{\frac{405}{25}} = \frac{\sqrt{405}}{5} = \frac{9\sqrt{5}}{5}</math>, and the length of <math>DP</math> is <math>\sqrt{\left(\frac{9}{2}\right)^2+\left(\frac{9}{4}\right)^2} = \sqrt{\frac{81}{4} + \frac{81}{16}} = \sqrt{\frac{405}{16}} = \frac{\sqrt{405}}{4} = \frac{9\sqrt{5}}{4}.</math> <math>PQ = DP - DQ = \frac{9\sqrt{5}}{4} - \frac{9\sqrt{5}}{5} = \frac{9\sqrt{5}}{20}.</math> The length of <math>DB = \sqrt{6^2 + 3^2} = \sqrt{45} = 3\sqrt{5}</math>. Then <math>BP= 3\sqrt{5} - \frac{9\sqrt{5}}{4} = \frac{3\sqrt{5}}{4}.</math> The ratio <math>BP : PQ : QD = \frac{3\sqrt{5}}{4} : \frac{9\sqrt{5}}{20} : \frac{9\sqrt{5}}{5} = 15\sqrt{5} : 9\sqrt{5} : 36\sqrt{5} = 15 : 9 : 36 = 5 : 3 : 12.</math> Then <math>r, s,</math> and <math>t</math> is <math>5, 3,</math> and <math>12</math>, respectively. The problem tells us to find <math>r + s + t</math>, so <math>5 + 3 + 12 = \boxed{\textbf{(E) }20}</math> ~ minor LaTeX edits by dolphin7 | + | We can set coordinates for the points. <math>D=(0,0), C=(6,0), B=(6,3),</math> and <math>A=(0,3)</math>. The line <math>BD</math>'s equation is <math>y = \frac{1}{2}x</math>, line <math>AE</math>'s equation is <math>y = -\frac{1}{6}x + 3</math>, and line <math>AF</math>'s equation is <math>y = -\frac{1}{3}x + 3</math>. Adding the equations of lines <math>BD</math> and <math>AE</math>, we find that the coordinates of <math>P</math> are <math>\left(\frac{9}{2},\frac{9}{4}\right)</math>. Furthermore we find that the coordinates of <math>Q</math> are <math>\left(\frac{18}{5}, \frac{9}{5}\right)</math>. Using the [[Pythagorean Theorem]], we get that the length of <math>QD</math> is <math>\sqrt{\left(\frac{18}{5}\right)^2+\left(\frac{9}{5}\right)^2} = \sqrt{\frac{405}{25}} = \frac{\sqrt{405}}{5} = \frac{9\sqrt{5}}{5}</math>, and the length of <math>DP</math> is <math>\sqrt{\left(\frac{9}{2}\right)^2+\left(\frac{9}{4}\right)^2} = \sqrt{\frac{81}{4} + \frac{81}{16}} = \sqrt{\frac{405}{16}} = \frac{\sqrt{405}}{4} = \frac{9\sqrt{5}}{4}.</math> <math>PQ = DP - DQ = \frac{9\sqrt{5}}{4} - \frac{9\sqrt{5}}{5} = \frac{9\sqrt{5}}{20}.</math> The length of <math>DB = \sqrt{6^2 + 3^2} = \sqrt{45} = 3\sqrt{5}</math>. Then <math>BP= 3\sqrt{5} - \frac{9\sqrt{5}}{4} = \frac{3\sqrt{5}}{4}.</math> The ratio <math>BP : PQ : QD = \frac{3\sqrt{5}}{4} : \frac{9\sqrt{5}}{20} : \frac{9\sqrt{5}}{5} = 15\sqrt{5} : 9\sqrt{5} : 36\sqrt{5} = 15 : 9 : 36 = 5 : 3 : 12.</math> Then <math>r, s,</math> and <math>t</math> is <math>5, 3,</math> and <math>12</math>, respectively. The problem tells us to find <math>r + s + t</math>, so <math>5 + 3 + 12 = \boxed{\textbf{(E) }20}</math> ~ minor <math>\LaTeX</math> edits by dolphin7 |
==Solution 4== | ==Solution 4== | ||
Line 72: | Line 72: | ||
==Solution 5 (Mass Points)== | ==Solution 5 (Mass Points)== | ||
− | Draw line segment <math>AC</math>, and call the intersection between <math>AC</math> and <math>BD</math> point <math>K</math>. In <math>\ | + | Draw line segment <math>AC</math>, and call the intersection between <math>AC</math> and <math>BD</math> point <math>K</math>. In <math>\triangle ABC</math>, observe that <math>BE:EC=1:2</math> and <math>AK:KC=1:1</math>. Using mass points, find that <math>BP:PK=1:1</math>. Again utilizing <math>\triangle ABC</math>, observe that <math>BF:FC=2:1</math> and <math>AK:KC=1:1</math>. Use mass points to find that <math>BQ:QK=4:1</math>. Now, draw a line segment with points <math>B</math>,<math>P</math>,<math>Q</math>, and <math>K</math> ordered from left to right. Set the values <math>BP=x</math>,<math>PK=x</math>,<math>BQ=4y</math> and <math>QK=y</math>. Setting both sides segment <math>BK</math> equal, we get <math>y= \frac{2}{5}x</math>. Plugging in and solving gives <math>QK= \frac{2}{5}x</math>, <math>PQ=\frac{3}{5}x</math>,<math>BP=x</math>. The question asks for <math>BP:PQ:QD</math>, so we add <math>2x</math> to <math>QK</math> and multiply the ratio by <math>5</math> to create integers. This creates <math>5(1:\frac{3}{5}:\frac{12}{5})= 5:3:12</math>. This sums up to <math>3+5+12=\boxed{\textbf{(E) }20}</math> |
==Solution 6 (Easy Coord Bash)== | ==Solution 6 (Easy Coord Bash)== |
Latest revision as of 16:25, 18 January 2025
Contents
[hide]Problem
In rectangle
and
. Point
between
and
, and point
between
and
are such that
. Segments
and
intersect
at
and
, respectively. The ratio
can be written as
where the greatest common factor of
and
is
What is
?
Solution 1 (Similar Triangles)
Use similar triangles. Our goal is to put the ratio in terms of . Since
Therefore,
. Similarly,
. This means that
. Therefore,
so
Solution 2 (Mass points and Similar Triangles - Easy)
This problem breaks down into finding and
. We can find the first using mass points, and the second using similar triangles.
Draw point on
such that
. Then, by similar triangles
. Again, by similar triangles
and
,
. Now we begin Mass Points.
We will consider the triangle with center
, so that
balances
and
, and
balances
and
. Assign a mass of
to
. Then,
so
. By mass points addition,
since
balances
and
.
Also,
so
so
. Then,
.
To calculate , extend
past
to point
such that
lies on
. Then
is similar to
so
. Also,
is similar to
so
Now, we wish to get . Observe that
. So,
so (since
has sum
),
. now, we may combine the two and get
so
.
~Firebolt360(minor edits by vadava_lx)
Solution 3(Coordinate Bash)
We can set coordinates for the points. and
. The line
's equation is
, line
's equation is
, and line
's equation is
. Adding the equations of lines
and
, we find that the coordinates of
are
. Furthermore we find that the coordinates of
are
. Using the Pythagorean Theorem, we get that the length of
is
, and the length of
is
The length of
. Then
The ratio
Then
and
is
and
, respectively. The problem tells us to find
, so
~ minor
edits by dolphin7
Solution 4
Extend to meet
at point
. Since
and
,
by similar triangles
and
. It follows that
. Now, using similar triangles
and
,
. WLOG let
. Solving for
gives
and
. So our desired ratio is
and
.
Solution 5 (Mass Points)
Draw line segment , and call the intersection between
and
point
. In
, observe that
and
. Using mass points, find that
. Again utilizing
, observe that
and
. Use mass points to find that
. Now, draw a line segment with points
,
,
, and
ordered from left to right. Set the values
,
,
and
. Setting both sides segment
equal, we get
. Plugging in and solving gives
,
,
. The question asks for
, so we add
to
and multiply the ratio by
to create integers. This creates
. This sums up to
Solution 6 (Easy Coord Bash)
We set coordinates for the points. Let and
. Then the equation of line
is
the equation of line
is
and the equation of line
is
. We find that the x-coordinate of point
is
by solving
Similarly we find that the x-coordinate of point
is
by solving
It follows that
Hence
and
~ Solution by dolphin7
Video Solution
https://www.youtube.com/watch?v=aG9JiBMd0ag
Video Solution 2
~IceMatrix
Video Solution 3 by OmegaLearn
https://youtu.be/4_x1sgcQCp4?t=3406
~ pi_is_3.14
See Also
2016 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 18 |
Followed by Problem 20 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.