Difference between revisions of "2023 AMC 10A Problems/Problem 21"

m (Video Solution - Fast and Easy)
 
(27 intermediate revisions by 19 users not shown)
Line 1: Line 1:
21.
+
==Problem==
The bond dissociation energies for F2 and Cl2 are
+
Let <math>P(x)</math> be the unique polynomial of minimal degree with the following properties:
approximately 158 and 242 kJ mol−1, respectively.
 
Given that the enthalpy change for the reaction below
 
is ΔH = −54 kJ mol−1, what is the bond dissociation
 
energy for the F-Cl bond?
 
½ F2(g) + ½ Cl2(g) → FCl(g)
 
  
A 200 kJ mol−1
+
*<math>P(x)</math> has a leading coefficient <math>1</math>,
  
B 254 kJ mol−1
+
*<math>1</math> is a root of <math>P(x)-1</math>,
  
C 146 kJ mol−1
+
*<math>2</math> is a root of <math>P(x-2)</math>,
  
D 454 kJ mol−1
+
*<math>3</math> is a root of <math>P(3x)</math>, and
  
E 346 kJ mol−1
+
*<math>4</math> is a root of <math>4P(x)</math>.
  
~kaisssssgao
+
The roots of <math>P(x)</math> are integers, with one exception. The root that is not an integer can be written as <math>\frac{m}{n}</math>, where <math>m</math> and <math>n</math> are relatively prime integers. What is <math>m+n</math>?
 +
 
 +
<math>\textbf{(A) }41\qquad\textbf{(B) }43\qquad\textbf{(C) }45\qquad\textbf{(D) }47\qquad\textbf{(E) }49</math>
 +
 
 +
==Solution 1==
 +
 
 +
From the problem statement, we know <math>P(2-2)=0</math>, <math>P(9)=0</math> and <math>4P(4)=0</math>. Therefore, we know that <math>0</math>, <math>9</math>, and <math>4</math> are roots. So, we can factor <math>P(x)</math> as <math>x(x - 9)(x - 4)(x - a)</math>, where <math>a</math> is the unknown root. Since <math>P(x) - 1 = 0</math>, we plug in <math>x = 1</math> which gives <math>1(-8)(-3)(1 - a) = 1</math>, therefore <math>24(1 - a) = 1 \implies 1 - a = 1/24 \implies a = 23/24</math>. Therefore, our answer is <math>23 + 24 =\boxed{\textbf{(D) }47}</math>
 +
 
 +
~aiden22gao
 +
                                                                                                               
 +
~cosinesine
 +
 
 +
~walmartbrian
 +
 
 +
~sravya_m18
 +
 
 +
~ESAOPS
 +
 
 +
== Solution 2==
 +
 
 +
We proceed similarly to solution one. We get that <math>x(x-9)(x-4)(x-a)=1</math>. Expanding, we get that <math>x(x-9)(x-4)(x-a)=x^4-(a+13)x^3+(13a+36)x^2-36ax</math>. We know that <math>P(1)=1</math>, so the sum of the coefficients of the cubic expression is equal to one. Thus <math>1+(a+13)+(13a+36)-36a=1</math>. Solving for a, we get that a=23/24. Therefore, our answer is <math>23 + 24 =\boxed{\textbf{(D) }47}</math>
 +
 
 +
~Aopsthedude
 +
 
 +
== Video Solution 1 by OmegaLearn ==
 +
https://youtu.be/aOL04sKGyfU
 +
== Video Solution ==
 +
https://youtu.be/jIqF_dhczsY
 +
 
 +
== Video Solution by CosineMethod ==
 +
 
 +
https://www.youtube.com/watch?v=HEqewKGKrFE
 +
 
 +
==Video Solution 2==
 +
 
 +
https://youtu.be/Jan9feBsPEg
 +
 
 +
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
 +
 
 +
==Video Solution 3 by EpicBird08==
 +
https://www.youtube.com/watch?v=D4GWjJmpqEU&t=25s
 +
 
 +
==Video Solution 4 by MegaMath==
 +
 
 +
https://www.youtube.com/watch?v=4Hwt3f1bi1c&t=1s
 +
 
 +
==See Also==
 +
{{AMC10 box|year=2023|ab=A|num-b=20|num-a=22}}
 +
{{MAA Notice}}

Latest revision as of 22:38, 10 May 2024

Problem

Let $P(x)$ be the unique polynomial of minimal degree with the following properties:

  • $P(x)$ has a leading coefficient $1$,
  • $1$ is a root of $P(x)-1$,
  • $2$ is a root of $P(x-2)$,
  • $3$ is a root of $P(3x)$, and
  • $4$ is a root of $4P(x)$.

The roots of $P(x)$ are integers, with one exception. The root that is not an integer can be written as $\frac{m}{n}$, where $m$ and $n$ are relatively prime integers. What is $m+n$?

$\textbf{(A) }41\qquad\textbf{(B) }43\qquad\textbf{(C) }45\qquad\textbf{(D) }47\qquad\textbf{(E) }49$

Solution 1

From the problem statement, we know $P(2-2)=0$, $P(9)=0$ and $4P(4)=0$. Therefore, we know that $0$, $9$, and $4$ are roots. So, we can factor $P(x)$ as $x(x - 9)(x - 4)(x - a)$, where $a$ is the unknown root. Since $P(x) - 1 = 0$, we plug in $x = 1$ which gives $1(-8)(-3)(1 - a) = 1$, therefore $24(1 - a) = 1 \implies 1 - a = 1/24 \implies a = 23/24$. Therefore, our answer is $23 + 24 =\boxed{\textbf{(D) }47}$

~aiden22gao

~cosinesine

~walmartbrian

~sravya_m18

~ESAOPS

Solution 2

We proceed similarly to solution one. We get that $x(x-9)(x-4)(x-a)=1$. Expanding, we get that $x(x-9)(x-4)(x-a)=x^4-(a+13)x^3+(13a+36)x^2-36ax$. We know that $P(1)=1$, so the sum of the coefficients of the cubic expression is equal to one. Thus $1+(a+13)+(13a+36)-36a=1$. Solving for a, we get that a=23/24. Therefore, our answer is $23 + 24 =\boxed{\textbf{(D) }47}$

~Aopsthedude

Video Solution 1 by OmegaLearn

https://youtu.be/aOL04sKGyfU

Video Solution

https://youtu.be/jIqF_dhczsY

Video Solution by CosineMethod

https://www.youtube.com/watch?v=HEqewKGKrFE

Video Solution 2

https://youtu.be/Jan9feBsPEg

~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)

Video Solution 3 by EpicBird08

https://www.youtube.com/watch?v=D4GWjJmpqEU&t=25s

Video Solution 4 by MegaMath

https://www.youtube.com/watch?v=4Hwt3f1bi1c&t=1s

See Also

2023 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png