Difference between revisions of "2023 AMC 12A Problems/Problem 23"
(→Solution 3:) |
|||
(12 intermediate revisions by 5 users not shown) | |||
Line 7: | Line 7: | ||
==Solution 1: AM-GM Inequality== | ==Solution 1: AM-GM Inequality== | ||
− | Using AM-GM on the two terms in each factor on the left, we get | + | Using the AM-GM inequality on the two terms in each factor on the left-hand side, we get |
<cmath>(1+2a)(2+2b)(2a+b) \ge 8\sqrt{2a \cdot 4b \cdot 2ab}= 32ab,</cmath> | <cmath>(1+2a)(2+2b)(2a+b) \ge 8\sqrt{2a \cdot 4b \cdot 2ab}= 32ab,</cmath> | ||
− | + | This means the equality condition must be satisfied. Therefore, we must have <math>1 = 2a = b</math>, so the only solution is <math>\boxed{\textbf{(B) }1}</math>. | |
+ | |||
+ | ~ semistevehan | ||
==Solution 2: Sum Of Squares== | ==Solution 2: Sum Of Squares== | ||
Line 16: | Line 18: | ||
where <math>a</math>, <math>b>0</math>. Therefore <math>2a-1=b-1=2a-b=0</math>, so <math>(a,b)=\left(\tfrac12,1\right)</math>. Hence the answer is <math>\boxed{\textbf{(B) }1}</math>. | where <math>a</math>, <math>b>0</math>. Therefore <math>2a-1=b-1=2a-b=0</math>, so <math>(a,b)=\left(\tfrac12,1\right)</math>. Hence the answer is <math>\boxed{\textbf{(B) }1}</math>. | ||
+ | |||
+ | ==Solution 3: == | ||
+ | |||
+ | <math>(1+2a)(1+b)(2a+b)=16ab</math>, | ||
+ | |||
+ | let <math>x=2a, y=b</math>, then it becomes <math>(1+x)(1+y)(x+y)=8xy</math>, or <math>(1+x+y+xy)(x+y)=8xy</math>. | ||
+ | |||
+ | Let <math>\alpha=x+y, \beta=xy</math>, it becomes <math>(1+\alpha+\beta)\alpha=8\beta</math>, | ||
+ | |||
+ | notice we have <math>\alpha^2-4\beta=(x-y)^2\ge 0</math>, now <math>\beta= \frac{\alpha(1+\alpha)}{(8-\alpha)}</math> | ||
+ | |||
+ | <math>\alpha^2\ge 4\beta=4\alpha(1+\alpha)/(8-\alpha)</math> (notice we must have <math>8-\alpha>0</math>), <math>(8-\alpha)\alpha\ge 4(1+\alpha)</math>, <math>(\alpha-2)^2\le 0</math>, <math>\alpha=2</math>, | ||
+ | and <math>\beta=1</math>, | ||
+ | |||
+ | so <math>x=y=1</math> and <math>a=\frac12, b=1</math> is the only solution. | ||
+ | |||
+ | answer is <math>\boxed{\textbf {(B)}} </math> | ||
+ | |||
+ | ~szhangmath | ||
+ | |||
+ | ==Video Solution== | ||
+ | https://youtu.be/bRQ7xBm1hFc | ||
+ | ~MathKatana | ||
==Video Solution 1 by OmegaLearn== | ==Video Solution 1 by OmegaLearn== | ||
https://youtu.be/LP4HSoaOCSU | https://youtu.be/LP4HSoaOCSU | ||
+ | |||
+ | ==Video Solution by MOP 2024== | ||
+ | https://youtu.be/kkx7sm6-ZE8 | ||
+ | |||
+ | ~r00tsOfUnity | ||
==Video Solution== | ==Video Solution== |
Latest revision as of 13:49, 2 November 2024
Contents
Problem
How many ordered pairs of positive real numbers satisfy the equation
Solution 1: AM-GM Inequality
Using the AM-GM inequality on the two terms in each factor on the left-hand side, we get This means the equality condition must be satisfied. Therefore, we must have , so the only solution is .
~ semistevehan
Solution 2: Sum Of Squares
Equation is equivalent to where , . Therefore , so . Hence the answer is .
Solution 3:
,
let , then it becomes , or .
Let , it becomes ,
notice we have , now
(notice we must have ), , , , and ,
so and is the only solution.
answer is
~szhangmath
Video Solution
https://youtu.be/bRQ7xBm1hFc ~MathKatana
Video Solution 1 by OmegaLearn
Video Solution by MOP 2024
~r00tsOfUnity
Video Solution
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
See also
2023 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 22 |
Followed by Problem 24 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.