Difference between revisions of "2023 AMC 10A Problems/Problem 12"

(Solution 5 (Quick and Fast ⚡⚡⚡⚡))
 
(17 intermediate revisions by 12 users not shown)
Line 8: Line 8:
 
<math>\textbf{(A) } 13 \qquad \textbf{(B) } 14 \qquad \textbf{(C) } 15 \qquad \textbf{(D) } 16 \qquad \textbf{(E) } 17</math>
 
<math>\textbf{(A) } 13 \qquad \textbf{(B) } 14 \qquad \textbf{(C) } 15 \qquad \textbf{(D) } 16 \qquad \textbf{(E) } 17</math>
  
==Note==
+
==Solution 1==
One thing to note is the number 560. When it is flipped, the result is 065, which is a number but has a leading zero. Since the problem doesn't say anything about 560, it is assumed to be a valid <math>N</math>. HamstPan38825 provides a good explanation on why this problem is wrong, "Define <math>f</math> to be the digit-reversal function in question, and suppose for the sake of contradiction that <math>f(560)</math> is a strictly defined number, hence <math>f(560) = 065 \equiv 65</math>, as was assumed when <math>560</math> was included in the count. Thus <math>65</math> and <math>065</math> are equivalent under input to <math>f</math> too, so <cmath>56 = f(65) = f(065) = 560</cmath> which is a contradiction as <math>f</math> is a function. Hence <math>f(560) = 065</math> is not a strictly-defined number, and it cannot be divisible by <math>5</math>."
 
  
 +
Multiples of <math>5</math> will always end in <math>0</math> or <math>5</math>, and since the numbers have to be a three-digit numbers, it cannot start with 0 (otherwise it would be a two-digit number), narrowing our choices to 3-digit numbers starting with <math>5</math>. Since the numbers must be divisible by 7, all possibilities have to be in the range from <math>7 \cdot 72</math> to <math>7 \cdot 85</math> inclusive(504 to 595).
  
~A_MatheMagician ~ESAOPS
+
(Add 1 to include 72)
  
==Solution 1==
+
<math>85 - 72 + 1 = 14</math>. <math>\boxed{\textbf{(B) } 14}</math>.
 
 
Multiples of <math>5</math> will always end in <math>0</math> or <math>5</math>, and since the numbers have to be a three-digit numbers (otherwise it would be a two-digit number), it cannot start with 0, narrowing our choices to 3-digit numbers starting with <math>5</math>. Since the numbers must be divisible by 7, all possibilities have to be in the range from <math>7 \cdot 72</math> to <math>7 \cdot 85</math> inclusive.  
 
  
<math>85 - 72 + 1 = 14</math>. <math>\boxed{\textbf{(B) } 14}</math>.
+
You can also take 497 away from each of the numbers(removing the hundreds digit and adding three to each of the numbers), resulting in the numbers {7, 14, 21..., 84, 91, 98}. Dividing each of them by 7, you get the numbers {1, 2, 3..., 12, 13, 14}. Therefore, the answer is <math>\boxed{\textbf{(B) 14}}</math>
  
~walmartbrian ~Shontai ~andliu766 ~andyluo ~ESAOPS
+
~walmartbrian ~Shontai ~andliu766 ~andyluo ~ESAOPS ~NXC
  
 
==Solution 2 (solution 1 but more thorough)==
 
==Solution 2 (solution 1 but more thorough)==
Line 80: Line 78:
 
Now, we just have to count <math>7\times 72, 7\times 73, 7\times 74,\cdots, 7\times 85</math>.
 
Now, we just have to count <math>7\times 72, 7\times 73, 7\times 74,\cdots, 7\times 85</math>.
  
We have a set that numbers 85-71 = <math>\boxed{\textbf{(B) 14}}</math>
+
We have a set that numbers <math>85-71=\boxed{\textbf{(B) 14}}</math>
  
~Dilip ~boppitybop ~ESAOPS (LaTeX)
+
~Dilip ~boppitybop ~ESAOPS (<math>\LaTeX</math>)  
 +
 
 +
== Solution 5 (Quick and Fast ⚡⚡⚡⚡) ==
 +
 
 +
We notice that the numbers have to be divisible by <math>5</math>, implying it ends with a <math>5</math> or a <math>0</math>. This means that when reversed it will start with a <math>0</math> and <math>5</math>. If a three-digit number starts with a <math>0</math>, it would be a two-digit number. This means that our number would have to start with a <math>5</math>. There are <math>99</math> total three-digit number that start with a <math>5</math> <math>(500 - 599)</math>. Since we want to find the numbers from <math>500 - 599</math> that are divisible by <math>7</math>, we do
 +
 
 +
<math>\lfloor{\dfrac{99}7} \rfloor = \boxed{\textbf{(C) } 14}</math>.
 +
 
 +
~yuvag
 +
 
 +
==Video Solution by Little Fermat==
 +
https://youtu.be/h2Pf2hvF1wE?si=xKgx8T-n-Y1ELLZF&t=2669
 +
~little-fermat
 +
 
 +
==Video Solution by Math-X (First fully understand the problem!!!)==
 +
https://youtu.be/GP-DYudh5qU?si=t4QMuoYyk2u5n64a&t=3140
 +
 
 +
~Math-X
 +
 
 +
==Video Solution ⚡️ 2 min solution ⚡️==
 +
https://youtu.be/YdaQIdxyBSg
 +
 
 +
<i> ~Education, the Study of Everything </i>
  
 
==Video Solution==
 
==Video Solution==
Line 90: Line 110:
 
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
 
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
  
 +
==Video Solution ==
 +
https://www.youtube.com/watch?v=Mg6JUanYNJY
  
==Video Solution by Math-X (First understand the problem!!!)==
+
==Note==
https://youtu.be/N2lyYRMuZuk?si=6B-mTB070UP2yuDF&t=435
+
According to the official answer key, choice (B) is correct. However, some have argued that it is ambiguous whether the number <math>560</math> should be included in the count, since its reversal, <math>065</math>, has a leading zero. It is assumed that <math>065</math> denotes the two-digit number <math>65</math>, which is divisible by <math>5</math>, but MAA should have clarified what happens when a number with trailing zeros is reversed.
 
 
~Math-X
 
  
 +
~A_MatheMagician ~ESAOPS ~sdpandit
  
 
==See Also==
 
==See Also==
 
{{AMC10 box|year=2023|ab=A|num-b=11|num-a=13}}
 
{{AMC10 box|year=2023|ab=A|num-b=11|num-a=13}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 19:25, 10 November 2024

Problem

How many three-digit positive integers $N$ satisfy the following properties?

  • The number $N$ is divisible by $7$.
  • The number formed by reversing the digits of $N$ is divisible by $5$.

$\textbf{(A) } 13 \qquad \textbf{(B) } 14 \qquad \textbf{(C) } 15 \qquad \textbf{(D) } 16 \qquad \textbf{(E) } 17$

Solution 1

Multiples of $5$ will always end in $0$ or $5$, and since the numbers have to be a three-digit numbers, it cannot start with 0 (otherwise it would be a two-digit number), narrowing our choices to 3-digit numbers starting with $5$. Since the numbers must be divisible by 7, all possibilities have to be in the range from $7 \cdot 72$ to $7 \cdot 85$ inclusive(504 to 595).

(Add 1 to include 72)

$85 - 72 + 1 = 14$. $\boxed{\textbf{(B) } 14}$.

You can also take 497 away from each of the numbers(removing the hundreds digit and adding three to each of the numbers), resulting in the numbers {7, 14, 21..., 84, 91, 98}. Dividing each of them by 7, you get the numbers {1, 2, 3..., 12, 13, 14}. Therefore, the answer is $\boxed{\textbf{(B) 14}}$

~walmartbrian ~Shontai ~andliu766 ~andyluo ~ESAOPS ~NXC

Solution 2 (solution 1 but more thorough)

Let $N=\overline{cab}=100c+10a+b.$ We know that $\overline{bac}$ is divisible by $5$, so $c$ is either $0$ or $5$. However, since $c$ is the first digit of the three-digit number $N$, it can not be $0$, so therefore, $c=5$. Thus, $N=\overline{5ab}=500+10a+b.$ There are no further restrictions on digits $a$ and $b$ aside from $N$ being divisible by $7$.

The smallest possible $N$ is $504$. The next smallest $N$ is $511$, then $518$, and so on, all the way up to $595$. Thus, our set of possible $N$ is $\{504,511,518,\dots,595\}$. Dividing by $7$ for each of the terms will not affect the cardinality of this set, so we do so and get $\{72,73,74,\dots,85\}$. We subtract $71$ from each of the terms, again leaving the cardinality unchanged. We end up with $\{1,2,3,\cdots,14\}$, which has a cardinality of $14$. Therefore, our answer is $\boxed{\textbf{(B) } 14.}$

~ Technodoggo

Solution 3 (modular arithmetic)

We first proceed as in the above solution, up to $N=500+10a+b$. We then use modular arithmetic:

\begin{align*} 0&\equiv N \:(\text{mod }7)\\ &\equiv500+10a+b\:(\text{mod }7)\\ &\equiv3+3a+b\:(\text{mod }7)\\ 3a+b&\equiv-3\:(\text{mod }7)\\ &\equiv4\:(\text{mod }7)\\ \end{align*}

We know that $0\le a,b<10$. We then look at each possible value of $a$:

If $a=0$, then $b$ must be $4$.

If $a=1$, then $b$ must be $1$ or $8$.

If $a=2$, then $b$ must be $5$.

If $a=3$, then $b$ must be $2$ or $9$.

If $a=4$, then $b$ must be $6$.

If $a=5$, then $b$ must be $3$.

If $a=6$, then $b$ must be $0$ or $7$.

If $a=7$, then $b$ must be $4$.

If $a=8$, then $b$ must be $1$ or $8$.

If $a=9$, then $b$ must be $5$.

Each of these cases are unique, so there are a total of $1+2+1+2+1+1+2+1+2+1=\boxed{\textbf{(B) } 14.}$

~ Technodoggo

Solution 4

The key point is that when reversed, the number must start with a $0$ or a $5$ based on the second restriction. But numbers can't start with a $0$.

So the problem is simply counting the number of multiples of $7$ in the $500$s.

$7 \times 72 = 504$, so the first multiple is $7 \times 72$.

$7 \times 85 = 595$, so the last multiple is $7 \times 85$.

Now, we just have to count $7\times 72, 7\times 73, 7\times 74,\cdots, 7\times 85$.

We have a set that numbers $85-71=\boxed{\textbf{(B) 14}}$

~Dilip ~boppitybop ~ESAOPS ($\LaTeX$)

Solution 5 (Quick and Fast ⚡⚡⚡⚡)

We notice that the numbers have to be divisible by $5$, implying it ends with a $5$ or a $0$. This means that when reversed it will start with a $0$ and $5$. If a three-digit number starts with a $0$, it would be a two-digit number. This means that our number would have to start with a $5$. There are $99$ total three-digit number that start with a $5$ $(500 - 599)$. Since we want to find the numbers from $500 - 599$ that are divisible by $7$, we do

$\lfloor{\dfrac{99}7} \rfloor = \boxed{\textbf{(C) } 14}$.

~yuvag

Video Solution by Little Fermat

https://youtu.be/h2Pf2hvF1wE?si=xKgx8T-n-Y1ELLZF&t=2669 ~little-fermat

Video Solution by Math-X (First fully understand the problem!!!)

https://youtu.be/GP-DYudh5qU?si=t4QMuoYyk2u5n64a&t=3140

~Math-X

Video Solution ⚡️ 2 min solution ⚡️

https://youtu.be/YdaQIdxyBSg

~Education, the Study of Everything

Video Solution

https://youtu.be/UYHCNlRDZBo

~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)

Video Solution

https://www.youtube.com/watch?v=Mg6JUanYNJY

Note

According to the official answer key, choice (B) is correct. However, some have argued that it is ambiguous whether the number $560$ should be included in the count, since its reversal, $065$, has a leading zero. It is assumed that $065$ denotes the two-digit number $65$, which is divisible by $5$, but MAA should have clarified what happens when a number with trailing zeros is reversed.

~A_MatheMagician ~ESAOPS ~sdpandit

See Also

2023 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png