Difference between revisions of "1997 AJHSME Problems/Problem 22"
(→Problem) |
m (→Solution) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 5: | Line 5: | ||
<math>\textbf{(A) }\text{300 dollars} \qquad \textbf{(B) }\text{375 dollars} \qquad \textbf{(C) }\text{450 dollars} \qquad \textbf{(D) }\text{560 dollars}\qquad \textbf{(E) }\text{675 dollars}</math> | <math>\textbf{(A) }\text{300 dollars} \qquad \textbf{(B) }\text{375 dollars} \qquad \textbf{(C) }\text{450 dollars} \qquad \textbf{(D) }\text{560 dollars}\qquad \textbf{(E) }\text{675 dollars}</math> | ||
− | ==Solution | + | ==Solution== |
The two-inch cube has a volume of <math>8</math> cubic inches, and the three-inch cube has a volume of <math>27</math> cubic inches. Thus, the three-inch cube has a weight that is <math>\frac{27}{8}</math> times that of the two-inch cube. Then its value is <math>\frac{27}{8} \cdot 200 = \boxed{\textbf{(E) }\text{675 dollars}}</math>. | The two-inch cube has a volume of <math>8</math> cubic inches, and the three-inch cube has a volume of <math>27</math> cubic inches. Thus, the three-inch cube has a weight that is <math>\frac{27}{8}</math> times that of the two-inch cube. Then its value is <math>\frac{27}{8} \cdot 200 = \boxed{\textbf{(E) }\text{675 dollars}}</math>. | ||
+ | |||
+ | ~ [https://artofproblemsolving.com/wiki/index.php/User:Cxsmi cxsmi] | ||
== See also == | == See also == |
Latest revision as of 12:39, 4 April 2024
Problem
A two-inch cube of silver weighs 3 pounds and is worth 200 dollars. How much is a three-inch cube of silver worth?
Solution
The two-inch cube has a volume of cubic inches, and the three-inch cube has a volume of cubic inches. Thus, the three-inch cube has a weight that is times that of the two-inch cube. Then its value is .
~ cxsmi
See also
1997 AJHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 21 |
Followed by Problem 23 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.