Difference between revisions of "1959 AHSME Problems/Problem 32"

m (fixed typo)
(Solution)
 
(One intermediate revision by the same user not shown)
Line 4: Line 4:
  
 
== Solution ==
 
== Solution ==
<math>\fbox{C}</math>
 
  
 +
<asy>
 +
 +
import geometry;
 +
 +
point O=(0,0);
 +
point A=(5,0);
 +
point B,T;
 +
 +
circle c=circle(O,3);
 +
 +
markscalefactor=0.05;
 +
 +
// Circle, segment OA
 +
draw(c);
 +
dot(O);
 +
label("O",O,NW);
 +
dot(A);
 +
label("A",A,NE);
 +
draw(O--A);
 +
 +
// Segments OT, OA
 +
line[] t1=tangents(c,A);
 +
pair[] t=intersectionpoints(t1[0], c);
 +
T=t[0];
 +
dot(t[0]);
 +
label("T",T,SE);
 +
draw(A--T--O);
 +
draw(rightanglemark(A,T,O));
 +
 +
// Point B
 +
pair[] b=intersectionpoints((O--A),c);
 +
B=b[0];
 +
dot("B",B,NE);
 +
 +
// Length labels
 +
label("$r$",midpoint(O--T),SW);
 +
label("$r$",midpoint(O--B),N);
 +
label("$\frac{4}{3}r$",midpoint(A--T),SE);
 +
 +
</asy>
 +
 +
Let the circle have center <math>O</math>, let the point of tangency be point <math>T</math>, and let <math>B</math> be the intersection of <math>\overline{OA}</math> with the circle, as in the diagram. By the definitions of a circle and a tangent to a circle, we know that <math>OB=OT=r</math> and <math>\overline{OT} \perp \overline{TA}</math>. By the [[Pythagorean Theorem]], <math>OA=\sqrt{\frac{25r^2}{9}}=\frac{5}{3}r</math>. Because the shortest segment from an external point to a circle lies on the line connecting that point to the center of the circle, our desired distance is <math>AB</math>. Because <math>OA=\frac{5}{3}r</math> and <math>OB=r</math>, <math>AB=\frac{5}{3}r-r=\frac{2}{3}r=\frac{(4/3)r}{2}=\boxed{\textbf{(C) }\frac{1}{2}l}</math>.
  
 
== See also ==
 
== See also ==

Latest revision as of 21:15, 20 July 2024

Problem

The length $l$ of a tangent, drawn from a point $A$ to a circle, is $\frac43$ of the radius $r$. The (shortest) distance from A to the circle is: $\textbf{(A)}\ \frac{1}{2}r \qquad\textbf{(B)}\ r\qquad\textbf{(C)}\ \frac{1}{2}l\qquad\textbf{(D)}\ \frac23l \qquad\textbf{(E)}\ \text{a value between r and l.}$

Solution

[asy]  import geometry;  point O=(0,0); point A=(5,0); point B,T;  circle c=circle(O,3);  markscalefactor=0.05;  // Circle, segment OA draw(c); dot(O); label("O",O,NW); dot(A); label("A",A,NE); draw(O--A);  // Segments OT, OA line[] t1=tangents(c,A); pair[] t=intersectionpoints(t1[0], c); T=t[0]; dot(t[0]); label("T",T,SE); draw(A--T--O); draw(rightanglemark(A,T,O));  // Point B pair[] b=intersectionpoints((O--A),c); B=b[0]; dot("B",B,NE);  // Length labels label("$r$",midpoint(O--T),SW); label("$r$",midpoint(O--B),N); label("$\frac{4}{3}r$",midpoint(A--T),SE);  [/asy]

Let the circle have center $O$, let the point of tangency be point $T$, and let $B$ be the intersection of $\overline{OA}$ with the circle, as in the diagram. By the definitions of a circle and a tangent to a circle, we know that $OB=OT=r$ and $\overline{OT} \perp \overline{TA}$. By the Pythagorean Theorem, $OA=\sqrt{\frac{25r^2}{9}}=\frac{5}{3}r$. Because the shortest segment from an external point to a circle lies on the line connecting that point to the center of the circle, our desired distance is $AB$. Because $OA=\frac{5}{3}r$ and $OB=r$, $AB=\frac{5}{3}r-r=\frac{2}{3}r=\frac{(4/3)r}{2}=\boxed{\textbf{(C) }\frac{1}{2}l}$.

See also

1959 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 31
Followed by
Problem 33
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png