Difference between revisions of "1957 AHSME Problems/Problem 31"

(created solution page)
 
m
 
(2 intermediate revisions by the same user not shown)
Line 8: Line 8:
  
 
== Solution ==
 
== Solution ==
<math>\boxed{\textbf{(B) }\frac{2-\sqrt{2}}2}</math>.
 
  
 +
<asy>
 +
 +
real x = 8*(2-sqrt(2))/2;
 +
 +
// Square
 +
draw((0,0)--(8,0)--(8,8)--(0,8)--(0,0));
 +
 +
// Corners
 +
draw((0,x)--(x,0));
 +
draw((8-x,0)--(8,x));
 +
draw((8,8-x)--(8-x,8));
 +
draw((x,8)--(0,8-x));
 +
 +
</asy>
 +
 +
Let the side length of the regular octagon be <math>s</math>, and let the length of the legs of the isosceles right triangles be <math>x</math>. The triangles are [[45-45-90|<math>45-45-90</math>]] triangles, so <math>s=x\sqrt2</math>. Because each side of the square is length <math>1</math> and is composed of two legs of the triangles and one side of the octagon, <math>2x+s=1</math>. Substituting <math>s=x\sqrt2</math> into this equation, we can now solve for <math>x</math> to get our desired answer:
 +
\begin{align*}
 +
2x+s &= 1 \\
 +
2x+x\sqrt2 &= 1 \\
 +
x(2+\sqrt2) &= 1 \\
 +
x &= \frac{1}{2+\sqrt2} \cdot \frac{2-\sqrt2}{2-\sqrt2} \\
 +
x &= \frac{2-\sqrt2}{4-2} = \frac{2-\sqrt2}{2}
 +
\end{align*}
 +
Thus, our answer is <math>\boxed{\textbf{(B) }\frac{2-\sqrt{2}}2}</math>.
  
 
== See Also ==
 
== See Also ==

Latest revision as of 17:27, 25 July 2024

Problem

A regular octagon is to be formed by cutting equal isosceles right triangles from the corners of a square. If the square has sides of one unit, the leg of each of the triangles has length:

$\textbf{(A)}\ \frac{2 + \sqrt{2}}{3} \qquad \textbf{(B)}\ \frac{2 - \sqrt{2}}{2}\qquad \textbf{(C)}\ \frac{1+\sqrt{2}}{2}\qquad\textbf{(D)}\ \frac{1+\sqrt{2}}{3}\qquad\textbf{(E)}\ \frac{2-\sqrt{2}}{3}$


Solution

[asy]  real x = 8*(2-sqrt(2))/2;  // Square draw((0,0)--(8,0)--(8,8)--(0,8)--(0,0));  // Corners draw((0,x)--(x,0)); draw((8-x,0)--(8,x)); draw((8,8-x)--(8-x,8)); draw((x,8)--(0,8-x));  [/asy]

Let the side length of the regular octagon be $s$, and let the length of the legs of the isosceles right triangles be $x$. The triangles are $45-45-90$ triangles, so $s=x\sqrt2$. Because each side of the square is length $1$ and is composed of two legs of the triangles and one side of the octagon, $2x+s=1$. Substituting $s=x\sqrt2$ into this equation, we can now solve for $x$ to get our desired answer: \begin{align*} 2x+s &= 1 \\ 2x+x\sqrt2 &= 1 \\ x(2+\sqrt2) &= 1 \\ x &= \frac{1}{2+\sqrt2} \cdot \frac{2-\sqrt2}{2-\sqrt2} \\ x &= \frac{2-\sqrt2}{4-2} = \frac{2-\sqrt2}{2} \end{align*} Thus, our answer is $\boxed{\textbf{(B) }\frac{2-\sqrt{2}}2}$.

See Also

1957 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 30
Followed by
Problem 32
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png