Difference between revisions of "1995 AHSME Problems/Problem 8"

(See also)
 
(5 intermediate revisions by 3 users not shown)
Line 8: Line 8:
 
size(120);
 
size(120);
 
defaultpen(0.7);
 
defaultpen(0.7);
pair  A = (0,6), B = (8,0), C= (0,0), D = (56/15,3.2), E = (4/3,0), F = (0, 3), G = (38/15,1.6);
+
pair  A = (0,6), B = (8,0), C= (0,0), D = (8/3,4), E = (8/3,0), F = (0, 3), G = (38/15,1.6);
 
draw(A--B--E--D--E--B--C--A--B--cycle);
 
draw(A--B--E--D--E--B--C--A--B--cycle);
 
label("\(A\)",A,W);
 
label("\(A\)",A,W);
Line 19: Line 19:
 
</asy>
 
</asy>
  
Since <math>\triangle BED</math> is similar to <math>\triangle ABC</math>, it is a 3-4-5 triangle, and thus <math>BD=4\cdot \dfrac{4}{3}=\dfrac{16}{3}\Rightarrow \boxed{\mathrm{(B)}}</math>.
+
<math>\triangle BAC</math> is a <math>6-8-10</math> right triangle with hypotenuse <math>AB = 10</math>.
 +
 
 +
<math>\triangle BDE</math> is similar to <math>\triangle BAC</math> by angle-angle similarity since <math>E=C = 90^\circ</math> and <math>B=B</math>, and thus <math>\frac{BD}{BA} = \frac{DE}{AC}</math>.
 +
 
 +
Solving the above for <math>BD</math>, we get <math>BD=\frac{BA\cdot DE}{AC} = 10\cdot \dfrac{4}{6}=\dfrac{20}{3}\Rightarrow \boxed{\mathrm{(C)}}</math>.
  
 
==See also==
 
==See also==
Line 25: Line 29:
  
 
[[Category:Introductory Geometry Problems]]
 
[[Category:Introductory Geometry Problems]]
 +
{{MAA Notice}}

Latest revision as of 12:58, 5 July 2013

Problem

In $\triangle ABC$, $\angle C = 90^\circ, AC = 6$ and $BC = 8$. Points $D$ and $E$ are on $\overline{AB}$ and $\overline{BC}$, respectively, and $\angle BED = 90^\circ$. If $DE = 4$, then $BD =$

$\mathrm{(A) \ 5 } \qquad \mathrm{(B) \ \frac {16}{3} } \qquad \mathrm{(C) \ \frac {20}{3} } \qquad \mathrm{(D) \ \frac {15}{2} } \qquad \mathrm{(E) \ 8 }$

Solution

[asy] size(120); defaultpen(0.7); pair  A = (0,6), B = (8,0), C= (0,0), D = (8/3,4), E = (8/3,0), F = (0, 3), G = (38/15,1.6); draw(A--B--E--D--E--B--C--A--B--cycle); label("\(A\)",A,W); label("\(B\)",B,E); label("\(C\)",C,SW); label("\(D\)",D,NE); label("\(E\)",E,S); label("\(6\)",F,W); label("\(4\)",G,NW); [/asy]

$\triangle BAC$ is a $6-8-10$ right triangle with hypotenuse $AB = 10$.

$\triangle BDE$ is similar to $\triangle BAC$ by angle-angle similarity since $E=C = 90^\circ$ and $B=B$, and thus $\frac{BD}{BA} = \frac{DE}{AC}$.

Solving the above for $BD$, we get $BD=\frac{BA\cdot DE}{AC} = 10\cdot \dfrac{4}{6}=\dfrac{20}{3}\Rightarrow \boxed{\mathrm{(C)}}$.

See also

1995 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png