|
|
(35 intermediate revisions by 24 users not shown) |
Line 1: |
Line 1: |
− | == Statement ==
| + | #REDIRECT[[Stewart's theorem]] |
− | ''(awaiting image)''<br>
| |
− | If a [[cevian]] of length t is drawn and divides side a into segments m and n, then
| |
− | <br><center><math>c^{2}n + b^{2}m = (m+n)(t^{2} + mn)</math></center><br>
| |
− | | |
− | == Proof ==
| |
− | For this proof we will use the law of cosines and the identity <math>\cos{\theta} = -\cos{180 - \theta}</math>.
| |
− | | |
− | Label the triangle <math>ABC</math> with a cevian extending from <math>A</math> onto <math>BC</math>, label that point <math>D</math>. Let CA = n Let DB = m. Let AD = t. We can write two equations:
| |
− | *<math> n^{2} + t^{2} - nt\cos{\angle CDA} = b^{2} </math>
| |
− | *<math> m^{2} + t^{2} + mt\cos{\angle CDA} = c^{2} </math>
| |
− | When we write everything in terms of <math>\cos{\angle CDA}</math> we have:
| |
− | *<math> \frac{n^2 + t^2 - b^2}{nt} = \cos{\angle CDA}</math>
| |
− | *<math> \frac{c^2 - m^2 -t^2}{mt} = \cos{\angle CDA}</math>
| |
− | | |
− | Now we set the two equal and arrive at Stewart's theorem: <math> c^{2}n + b^{2}m=m^{2}n +n^{2}m + t^{2}m + t^{2}n </math>
| |
− | | |
− |
| |
− | | |
− | == Example ==
| |
− | ''(awaiting addition)''
| |
− | | |
− | == See also ==
| |
− | * [[Menelaus' Theorem]]
| |
− | * [[Ceva's Theorem]]
| |