Difference between revisions of "2009 USAMO Problems/Problem 4"
(→Solution) |
(→Solution 2) |
||
(12 intermediate revisions by 7 users not shown) | |||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
For <math>n \ge 2</math> let <math>a_1</math>, <math>a_2</math>, ..., <math>a_n</math> be positive real numbers such that | For <math>n \ge 2</math> let <math>a_1</math>, <math>a_2</math>, ..., <math>a_n</math> be positive real numbers such that | ||
− | < | + | <center><math> (a_1+a_2+ ... +a_n)\left( {1 \over a_1} + {1 \over a_2} + ... +{1 \over a_n} \right) \le \left(n+ {1 \over 2} \right) ^2 </math></center> |
− | Prove that | + | Prove that <math>\text{max}(a_1, a_2, ... ,a_n) \le 4 \text{min}(a_1, a_2, ... , a_n)</math>. |
+ | == Solution 1== | ||
+ | Assume without loss of generality that <math>a_1 \geq a_2 \geq \cdots \geq a_n</math>. Now we seek to prove that <math>a_1 \le 4a_n</math>. | ||
− | + | By the [[Cauchy-Schwarz Inequality]], <cmath>\begin{align*} | |
− | + | (a_n+a_2+ a_3 + ... +a_{n-1}+a_1)\left({1 \over a_1} + {1 \over a_2} + ... +{1 \over a_n}\right) &\ge \left( \sqrt{a_n \over a_1} + n-2 + \sqrt{a_1 \over a_n} \right)^2 \\ | |
+ | (n+ {1 \over 2})^2 &\ge \left( \sqrt{a_n \over a_1} + n-2 + \sqrt{a_1 \over a_n} \right)^2 \\ | ||
+ | n+ {1 \over 2} &\ge n-2 + \sqrt{a_n \over a_1} + \sqrt{a_1 \over a_n} \\ | ||
+ | {5 \over 2} &\ge \sqrt{a_n \over a_1} + \sqrt{a_1 \over a_n} \\ | ||
+ | {17 \over 4} &\ge {a_n \over a_1} + {a_1 \over a_n} \\ | ||
+ | 0 &\ge (a_1 - 4a_n)\left(a_1 - {a_n \over 4}\right) \end{align*}</cmath> | ||
+ | Since <math>a_1 \ge a_n</math>, clearly <math>(a_1 - {a_n \over 4}) > 0</math>, dividing yields: | ||
− | + | <cmath>0 \ge (a_1 - 4a_n) \Longrightarrow 4a_n \ge a_1</cmath> | |
− | + | ||
− | + | as desired. | |
− | + | ||
− | + | == Solution 2== | |
− | < | + | Assume without loss of generality that <math>a_1 \geq a_2 \geq \cdots \geq a_n</math>. |
− | + | Using the Cauchy–Bunyakovsky–Schwarz inequality and the inequality given, <cmath>\begin{align*} | |
− | + | &\left(a_1+a_2 + ... +a_n + 3a_n -\frac{3a_1}{4}\right)\left({1 \over a_1} + {1 \over a_2} + ... +{1 \over a_n}\right) \\ | |
− | + | =&\left(\frac{a_1}{4}+a_2 + ... +a_{n-1}+4a_n\right)\left({1 \over a_1} + {1 \over a_2} + ... +{1 \over a_n}\right) \\ | |
− | + | \ge& \left(\frac{1}{2}+n-2+2\right)^2 \\ | |
+ | =&\left(n+\frac{1}{2}\right)^2 \\ | ||
+ | \ge& (a_1+a_2 + ... +a_{n})\left({1 \over a_1} + {1 \over a_2} + ... +{1 \over a_n}\right).\end{align*}</cmath> | ||
+ | (Note that <math>n-2 \ge 0</math> since <math>n \ge 2</math> as given!) | ||
+ | This implies that <math>3a_n -\frac{3a_1}{4} \ge 0 \iff 4a_n \ge a_1</math> as desired. | ||
+ | |||
+ | ~Deng Tianle, username: Leole | ||
+ | |||
+ | == See Also == | ||
+ | {{USAMO newbox|year=2009|num-b=3|num-a=5}} | ||
+ | |||
+ | [[Category:Olympiad Algebra Problems]] | ||
+ | [[Category:Olympiad Inequality Problems]] | ||
+ | {{MAA Notice}} |
Latest revision as of 23:50, 13 July 2024
Contents
Problem
For let , , ..., be positive real numbers such that
Prove that .
Solution 1
Assume without loss of generality that . Now we seek to prove that .
By the Cauchy-Schwarz Inequality, Since , clearly , dividing yields:
as desired.
Solution 2
Assume without loss of generality that . Using the Cauchy–Bunyakovsky–Schwarz inequality and the inequality given, (Note that since as given!) This implies that as desired.
~Deng Tianle, username: Leole
See Also
2009 USAMO (Problems • Resources) | ||
Preceded by Problem 3 |
Followed by Problem 5 | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAMO Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.