Difference between revisions of "2003 AMC 8 Problems/Problem 3"

(Created page with "==Problem 3== A burger at Ricky C's weighs <math>120</math> grams, of which <math>30</math> grams are filler. What percent of the burger is not filler? <math>\mathrm{(A)}\ 60\%...")
 
(Solution2)
 
(5 intermediate revisions by 5 users not shown)
Line 1: Line 1:
==Problem 3==
+
==Problem==
 
A burger at Ricky C's weighs <math>120</math> grams, of which <math>30</math> grams are filler.  
 
A burger at Ricky C's weighs <math>120</math> grams, of which <math>30</math> grams are filler.  
 
What percent of the burger is not filler?
 
What percent of the burger is not filler?
Line 6: Line 6:
  
 
==Solution==
 
==Solution==
There is <math> 30 </math> grams of filler, so there is <math> 120-30= 90 </math> grams that aren't filler. <math> \frac{90}{120}=\frac{3}{4}=\boxed{\mathrm{(D)}\ 75\%} </math>.
+
There are <math> 30 </math> grams of filler, so there are <math> 120-30= 90 </math> grams that aren't filler. <math> \frac{90}{120}=\frac{3}{4}=\boxed{\mathrm{(D)}\ 75\%} </math>.
 +
 
 +
==See Also==
 +
{{AMC8 box|year=2003|num-b=2|num-a=4}}
 +
{{MAA Notice}}

Latest revision as of 14:18, 26 July 2017

Problem

A burger at Ricky C's weighs $120$ grams, of which $30$ grams are filler. What percent of the burger is not filler?

$\mathrm{(A)}\ 60\% \qquad\mathrm{(B)}\ 65\% \qquad\mathrm{(C)}\ 70\% \qquad\mathrm{(D)}\ 75\% \qquad\mathrm{(E)}\ 90\%$

Solution

There are $30$ grams of filler, so there are $120-30= 90$ grams that aren't filler. $\frac{90}{120}=\frac{3}{4}=\boxed{\mathrm{(D)}\ 75\%}$.

See Also

2003 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png