Difference between revisions of "2003 AMC 12A Problems/Problem 8"
(→Solution) |
|||
(4 intermediate revisions by 4 users not shown) | |||
Line 20: | Line 20: | ||
=== Solution 2=== | === Solution 2=== | ||
Testing all numbers less than <math>7</math>, numbers <math>1, 2, 3, 4, 5</math>, and <math>6</math> divide <math>60</math>. The prime factorization of <math>60</math> is <math>2^2\cdot 3 \cdot 5</math>. Using the formula for the number of divisors, the total number of divisors of <math>60</math> is <math>(3)(2)(2) = 12</math>. Therefore, our desired probability is <math>\frac{6}{12} = \boxed{\mathrm{(E)}\ \frac{1}{2}}</math> | Testing all numbers less than <math>7</math>, numbers <math>1, 2, 3, 4, 5</math>, and <math>6</math> divide <math>60</math>. The prime factorization of <math>60</math> is <math>2^2\cdot 3 \cdot 5</math>. Using the formula for the number of divisors, the total number of divisors of <math>60</math> is <math>(3)(2)(2) = 12</math>. Therefore, our desired probability is <math>\frac{6}{12} = \boxed{\mathrm{(E)}\ \frac{1}{2}}</math> | ||
+ | |||
+ | ===Solution 3=== | ||
+ | This is not too bad with casework. Notice that <math>1*60=2*30=3*20=4*15=5*12=6*10=60</math>. Hence, <math>60</math> has <math>12</math> factors, of which <math>6</math> are less than <math>7</math>. Thus, the answer is <math>\frac{6}{12} = \boxed{\mathrm{(E)}\ \frac{1}{2}}</math>. | ||
+ | |||
+ | Solution by franzliszt | ||
+ | |||
+ | ===Solution 4=== | ||
+ | This following solution isn't recommended, but just list out all the divisors of <math>60</math> to find <math>12</math> divisors. <math>6</math> of these are less than <math>7,</math> so the answer is <math>\frac{6}{12} = \boxed{\mathrm{(E)}\ \frac{1}{2}}</math>. ~Sophia866 | ||
+ | |||
+ | ==Video Solution== | ||
+ | |||
+ | https://youtu.be/C3prgokOdHc | ||
+ | |||
+ | ~savannahsolver | ||
+ | |||
+ | https://www.youtube.com/watch?v=jpMzPl7vkxE ~David | ||
== See Also == | == See Also == | ||
Line 26: | Line 42: | ||
[[Category:Introductory Number Theory Problems]] | [[Category:Introductory Number Theory Problems]] | ||
+ | {{MAA Notice}} |
Latest revision as of 14:40, 19 August 2023
- The following problem is from both the 2003 AMC 12A #8 and 2003 AMC 10A #8, so both problems redirect to this page.
Contents
Problem
What is the probability that a randomly drawn positive factor of is less than ?
Solution
Solution 1
For a positive number which is not a perfect square, exactly half of the positive factors will be less than .
Since is not a perfect square, half of the positive factors of will be less than .
Clearly, there are no positive factors of between and .
Therefore half of the positive factors will be less than .
So the answer is .
Solution 2
Testing all numbers less than , numbers , and divide . The prime factorization of is . Using the formula for the number of divisors, the total number of divisors of is . Therefore, our desired probability is
Solution 3
This is not too bad with casework. Notice that . Hence, has factors, of which are less than . Thus, the answer is .
Solution by franzliszt
Solution 4
This following solution isn't recommended, but just list out all the divisors of to find divisors. of these are less than so the answer is . ~Sophia866
Video Solution
~savannahsolver
https://www.youtube.com/watch?v=jpMzPl7vkxE ~David
See Also
2003 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 7 |
Followed by Problem 9 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2003 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 7 |
Followed by Problem 9 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.